ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-10-25
    Description: Determining the genetic basis of cancer requires comprehensive analyses of large collections of histopathologically well-classified primary tumours. Here we report the results of a collaborative study to discover somatic mutations in 188 human lung adenocarcinomas. DNA sequencing of 623 genes with known or potential relationships to cancer revealed more than 1,000 somatic mutations across the samples. Our analysis identified 26 genes that are mutated at significantly high frequencies and thus are probably involved in carcinogenesis. The frequently mutated genes include tyrosine kinases, among them the EGFR homologue ERBB4; multiple ephrin receptor genes, notably EPHA3; vascular endothelial growth factor receptor KDR; and NTRK genes. These data provide evidence of somatic mutations in primary lung adenocarcinoma for several tumour suppressor genes involved in other cancers--including NF1, APC, RB1 and ATM--and for sequence changes in PTPRD as well as the frequently deleted gene LRP1B. The observed mutational profiles correlate with clinical features, smoking status and DNA repair defects. These results are reinforced by data integration including single nucleotide polymorphism array and gene expression array. Our findings shed further light on several important signalling pathways involved in lung adenocarcinoma, and suggest new molecular targets for treatment.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694412/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694412/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ding, Li -- Getz, Gad -- Wheeler, David A -- Mardis, Elaine R -- McLellan, Michael D -- Cibulskis, Kristian -- Sougnez, Carrie -- Greulich, Heidi -- Muzny, Donna M -- Morgan, Margaret B -- Fulton, Lucinda -- Fulton, Robert S -- Zhang, Qunyuan -- Wendl, Michael C -- Lawrence, Michael S -- Larson, David E -- Chen, Ken -- Dooling, David J -- Sabo, Aniko -- Hawes, Alicia C -- Shen, Hua -- Jhangiani, Shalini N -- Lewis, Lora R -- Hall, Otis -- Zhu, Yiming -- Mathew, Tittu -- Ren, Yanru -- Yao, Jiqiang -- Scherer, Steven E -- Clerc, Kerstin -- Metcalf, Ginger A -- Ng, Brian -- Milosavljevic, Aleksandar -- Gonzalez-Garay, Manuel L -- Osborne, John R -- Meyer, Rick -- Shi, Xiaoqi -- Tang, Yuzhu -- Koboldt, Daniel C -- Lin, Ling -- Abbott, Rachel -- Miner, Tracie L -- Pohl, Craig -- Fewell, Ginger -- Haipek, Carrie -- Schmidt, Heather -- Dunford-Shore, Brian H -- Kraja, Aldi -- Crosby, Seth D -- Sawyer, Christopher S -- Vickery, Tammi -- Sander, Sacha -- Robinson, Jody -- Winckler, Wendy -- Baldwin, Jennifer -- Chirieac, Lucian R -- Dutt, Amit -- Fennell, Tim -- Hanna, Megan -- Johnson, Bruce E -- Onofrio, Robert C -- Thomas, Roman K -- Tonon, Giovanni -- Weir, Barbara A -- Zhao, Xiaojun -- Ziaugra, Liuda -- Zody, Michael C -- Giordano, Thomas -- Orringer, Mark B -- Roth, Jack A -- Spitz, Margaret R -- Wistuba, Ignacio I -- Ozenberger, Bradley -- Good, Peter J -- Chang, Andrew C -- Beer, David G -- Watson, Mark A -- Ladanyi, Marc -- Broderick, Stephen -- Yoshizawa, Akihiko -- Travis, William D -- Pao, William -- Province, Michael A -- Weinstock, George M -- Varmus, Harold E -- Gabriel, Stacey B -- Lander, Eric S -- Gibbs, Richard A -- Meyerson, Matthew -- Wilson, Richard K -- P50 CA070907/CA/NCI NIH HHS/ -- R01 CA154365/CA/NCI NIH HHS/ -- U19 CA084953/CA/NCI NIH HHS/ -- U19 CA084953-050003/CA/NCI NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54 HG003067-04/HG/NHGRI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- England -- Nature. 2008 Oct 23;455(7216):1069-75. doi: 10.1038/nature07423.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Genome Center at Washington University, Department of Genetics, Washington University School of Medicine, St Louis, Missouri 63108, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18948947" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma, Bronchiolo-Alveolar/*genetics ; Female ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Genes, Tumor Suppressor ; Humans ; Lung Neoplasms/*genetics ; Male ; Mutation/*genetics ; Proto-Oncogenes/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-10-28
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Robinson, Oliver J -- England -- Nature. 2011 Oct 26;478(7370):459. doi: 10.1038/478459b.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22031429" target="_blank"〉PubMed〈/a〉
    Keywords: Female ; Humans ; Male ; Mental Disorders/*economics/*epidemiology ; Mental Health/*statistics & numerical data ; Research Support as Topic/*economics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-31
    Description: Brown and beige adipose tissues can dissipate chemical energy as heat through thermogenic respiration, which requires uncoupling protein 1 (UCP1). Thermogenesis from these adipocytes can combat obesity and diabetes, encouraging investigation of factors that control UCP1-dependent respiration in vivo. Here we show that acutely activated thermogenesis in brown adipose tissue is defined by a substantial increase in levels of mitochondrial reactive oxygen species (ROS). Remarkably, this process supports in vivo thermogenesis, as pharmacological depletion of mitochondrial ROS results in hypothermia upon cold exposure, and inhibits UCP1-dependent increases in whole-body energy expenditure. We further establish that thermogenic ROS alter the redox status of cysteine thiols in brown adipose tissue to drive increased respiration, and that Cys253 of UCP1 is a key target. UCP1 Cys253 is sulfenylated during thermogenesis, while mutation of this site desensitizes the purine-nucleotide-inhibited state of the carrier to adrenergic activation and uncoupling. These studies identify mitochondrial ROS induction in brown adipose tissue as a mechanism that supports UCP1-dependent thermogenesis and whole-body energy expenditure, which opens the way to improved therapeutic strategies for combating metabolic disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chouchani, Edward T -- Kazak, Lawrence -- Jedrychowski, Mark P -- Lu, Gina Z -- Erickson, Brian K -- Szpyt, John -- Pierce, Kerry A -- Laznik-Bogoslavski, Dina -- Vetrivelan, Ramalingam -- Clish, Clary B -- Robinson, Alan J -- Gygi, Steve P -- Spiegelman, Bruce M -- DK31405/DK/NIDDK NIH HHS/ -- Canadian Institutes of Health Research/Canada -- England -- Nature. 2016 Apr 7;532(7597):112-6. doi: 10.1038/nature17399. Epub 2016 Mar 30.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA. ; Department of Neurology, Harvard Medical School, Boston, Massachusetts 02215, USA. ; MRC Mitochondrial Biology Unit, Hills Road, Cambridge CB2 0XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27027295" target="_blank"〉PubMed〈/a〉
    Keywords: Adipose Tissue, Brown/chemistry/cytology/metabolism ; Animals ; Cell Respiration ; Cysteine/*chemistry/genetics/metabolism ; *Energy Metabolism/drug effects ; Female ; Humans ; Ion Channels/*chemistry/deficiency/genetics/*metabolism ; Male ; Mice ; Mice, Inbred C57BL ; Mitochondria/drug effects/*metabolism ; Mitochondrial Proteins/*chemistry/deficiency/genetics/*metabolism ; Mutant Proteins/chemistry/genetics/metabolism ; Oxidation-Reduction ; Reactive Oxygen Species/*metabolism ; Sulfhydryl Compounds/metabolism ; *Thermogenesis/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...