ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2009-08-21
    Description: The precise spatio-temporal dynamics of protein activity are often critical in determining cell behaviour, yet for most proteins they remain poorly understood; it remains difficult to manipulate protein activity at precise times and places within living cells. Protein activity has been controlled by light, through protein derivatization with photocleavable moieties or using photoreactive small-molecule ligands. However, this requires use of toxic ultraviolet wavelengths, activation is irreversible, and/or cell loading is accomplished via disruption of the cell membrane (for example, through microinjection). Here we have developed a new approach to produce genetically encoded photoactivatable derivatives of Rac1, a key GTPase regulating actin cytoskeletal dynamics in metazoan cells. Rac1 mutants were fused to the photoreactive LOV (light oxygen voltage) domain from phototropin, sterically blocking Rac1 interactions until irradiation unwound a helix linking LOV to Rac1. Photoactivatable Rac1 (PA-Rac1) could be reversibly and repeatedly activated using 458- or 473-nm light to generate precisely localized cell protrusions and ruffling. Localized Rac activation or inactivation was sufficient to produce cell motility and control the direction of cell movement. Myosin was involved in Rac control of directionality but not in Rac-induced protrusion, whereas PAK was required for Rac-induced protrusion. PA-Rac1 was used to elucidate Rac regulation of RhoA in cell motility. Rac and Rho coordinate cytoskeletal behaviours with seconds and submicrometre precision. Their mutual regulation remains controversial, with data indicating that Rac inhibits and/or activates Rho. Rac was shown to inhibit RhoA in mouse embryonic fibroblasts, with inhibition modulated at protrusions and ruffles. A PA-Rac crystal structure and modelling revealed LOV-Rac interactions that will facilitate extension of this photoactivation approach to other proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766670/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766670/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Yi I -- Frey, Daniel -- Lungu, Oana I -- Jaehrig, Angelika -- Schlichting, Ilme -- Kuhlman, Brian -- Hahn, Klaus M -- GM057464/GM/NIGMS NIH HHS/ -- GM64346/GM/NIGMS NIH HHS/ -- R01 GM057464/GM/NIGMS NIH HHS/ -- R01 GM057464-09/GM/NIGMS NIH HHS/ -- U54 GM064346/GM/NIGMS NIH HHS/ -- U54 GM064346-089026/GM/NIGMS NIH HHS/ -- England -- Nature. 2009 Sep 3;461(7260):104-8. doi: 10.1038/nature08241. Epub 2009 Aug 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, USA. yiwu@med.unc.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19693014" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Avena/genetics ; Cell Line ; *Cell Movement/radiation effects ; Cell Surface Extensions ; Cell Survival ; Cryptochromes ; Crystallization ; Crystallography, X-Ray ; Embryo, Mammalian/cytology ; Enzyme Activation/radiation effects ; Fibroblasts ; Flavoproteins/chemistry/genetics/metabolism ; Fluorescence Recovery After Photobleaching ; Genetic Engineering/*methods ; HeLa Cells ; Humans ; Mice ; Models, Molecular ; Myosins/metabolism ; Protein Conformation ; rac1 GTP-Binding Protein/chemistry/*genetics/*metabolism/radiation effects ; rho GTP-Binding Proteins/antagonists & inhibitors/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-11-03
    Description: Natural killer cells and cytotoxic T lymphocytes accomplish the critically important function of killing virus-infected and neoplastic cells. They do this by releasing the pore-forming protein perforin and granzyme proteases from cytoplasmic granules into the cleft formed between the abutting killer and target cell membranes. Perforin, a 67-kilodalton multidomain protein, oligomerizes to form pores that deliver the pro-apoptopic granzymes into the cytosol of the target cell. The importance of perforin is highlighted by the fatal consequences of congenital perforin deficiency, with more than 50 different perforin mutations linked to familial haemophagocytic lymphohistiocytosis (type 2 FHL). Here we elucidate the mechanism of perforin pore formation by determining the X-ray crystal structure of monomeric murine perforin, together with a cryo-electron microscopy reconstruction of the entire perforin pore. Perforin is a thin 'key-shaped' molecule, comprising an amino-terminal membrane attack complex perforin-like (MACPF)/cholesterol dependent cytolysin (CDC) domain followed by an epidermal growth factor (EGF) domain that, together with the extreme carboxy-terminal sequence, forms a central shelf-like structure. A C-terminal C2 domain mediates initial, Ca(2+)-dependent membrane binding. Most unexpectedly, however, electron microscopy reveals that the orientation of the perforin MACPF domain in the pore is inside-out relative to the subunit arrangement in CDCs. These data reveal remarkable flexibility in the mechanism of action of the conserved MACPF/CDC fold and provide new insights into how related immune defence molecules such as complement proteins assemble into pores.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Law, Ruby H P -- Lukoyanova, Natalya -- Voskoboinik, Ilia -- Caradoc-Davies, Tom T -- Baran, Katherine -- Dunstone, Michelle A -- D'Angelo, Michael E -- Orlova, Elena V -- Coulibaly, Fasseli -- Verschoor, Sandra -- Browne, Kylie A -- Ciccone, Annette -- Kuiper, Michael J -- Bird, Phillip I -- Trapani, Joseph A -- Saibil, Helen R -- Whisstock, James C -- 079605/Wellcome Trust/United Kingdom -- BB/D008573/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Arthritis Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2010 Nov 18;468(7322):447-51. doi: 10.1038/nature09518. Epub 2010 Oct 31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21037563" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Membrane/*metabolism ; Cholesterol/metabolism ; Cryoelectron Microscopy ; Crystallography, X-Ray ; Epidermal Growth Factor/chemistry ; Granzymes/metabolism ; Humans ; Lymphocytes/*metabolism ; Mice ; Models, Molecular ; Pore Forming Cytotoxic Proteins/*chemistry/genetics/*metabolism/ultrastructure ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-08
    Description: SAMHD1, an analogue of the murine interferon (IFN)-gamma-induced gene Mg11 (ref. 1), has recently been identified as a human immunodeficiency virus-1 (HIV-1) restriction factor that blocks early-stage virus replication in dendritic and other myeloid cells and is the target of the lentiviral protein Vpx, which can relieve HIV-1 restriction. SAMHD1 is also associated with Aicardi-Goutieres syndrome (AGS), an inflammatory encephalopathy characterized by chronic cerebrospinal fluid lymphocytosis and elevated levels of the antiviral cytokine IFN-alpha. The pathology associated with AGS resembles congenital viral infection, such as transplacentally acquired HIV. Here we show that human SAMHD1 is a potent dGTP-stimulated triphosphohydrolase that converts deoxynucleoside triphosphates to the constituent deoxynucleoside and inorganic triphosphate. The crystal structure of the catalytic core of SAMHD1 reveals that the protein is dimeric and indicates a molecular basis for dGTP stimulation of catalytic activity against dNTPs. We propose that SAMHD1, which is highly expressed in dendritic cells, restricts HIV-1 replication by hydrolysing the majority of cellular dNTPs, thus inhibiting reverse transcription and viral complementary DNA (cDNA) synthesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Goldstone, David C -- Ennis-Adeniran, Valerie -- Hedden, Joseph J -- Groom, Harriet C T -- Rice, Gillian I -- Christodoulou, Evangelos -- Walker, Philip A -- Kelly, Geoff -- Haire, Lesley F -- Yap, Melvyn W -- de Carvalho, Luiz Pedro S -- Stoye, Jonathan P -- Crow, Yanick J -- Taylor, Ian A -- Webb, Michelle -- MC_U117512710/Medical Research Council/United Kingdom -- MC_U117533887/Medical Research Council/United Kingdom -- MC_U117565647/Medical Research Council/United Kingdom -- MC_UP_A253_1111/Medical Research Council/United Kingdom -- U117512710/Medical Research Council/United Kingdom -- U117565647/Medical Research Council/United Kingdom -- England -- Nature. 2011 Nov 6;480(7377):379-82. doi: 10.1038/nature10623.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Molecular Structure, MRC National Institute for Medical Research, London NW7 1AA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22056990" target="_blank"〉PubMed〈/a〉
    Keywords: Allosteric Regulation ; Biocatalysis ; Catalytic Domain ; Crystallography, X-Ray ; Dendritic Cells/metabolism/virology ; Deoxyadenine Nucleotides/metabolism ; Deoxycytosine Nucleotides/metabolism ; Deoxyguanine Nucleotides/metabolism ; HIV-1/*physiology ; Humans ; Hydrolysis ; Models, Biological ; Models, Molecular ; Monomeric GTP-Binding Proteins/*chemistry/genetics/*metabolism ; Myeloid Cells/virology ; Nucleoside-Triphosphatase/*chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Reverse Transcription ; Thymine Nucleotides/metabolism ; Viral Regulatory and Accessory Proteins/metabolism ; Virus Replication
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-01-14
    Description: G protein coupled receptors (GPCRs) exhibit a spectrum of functional behaviours in response to natural and synthetic ligands. Recent crystal structures provide insights into inactive states of several GPCRs. Efforts to obtain an agonist-bound active-state GPCR structure have proven difficult due to the inherent instability of this state in the absence of a G protein. We generated a camelid antibody fragment (nanobody) to the human beta(2) adrenergic receptor (beta(2)AR) that exhibits G protein-like behaviour, and obtained an agonist-bound, active-state crystal structure of the receptor-nanobody complex. Comparison with the inactive beta(2)AR structure reveals subtle changes in the binding pocket; however, these small changes are associated with an 11 A outward movement of the cytoplasmic end of transmembrane segment 6, and rearrangements of transmembrane segments 5 and 7 that are remarkably similar to those observed in opsin, an active form of rhodopsin. This structure provides insights into the process of agonist binding and activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058308/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3058308/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rasmussen, Soren G F -- Choi, Hee-Jung -- Fung, Juan Jose -- Pardon, Els -- Casarosa, Paola -- Chae, Pil Seok -- Devree, Brian T -- Rosenbaum, Daniel M -- Thian, Foon Sun -- Kobilka, Tong Sun -- Schnapp, Andreas -- Konetzki, Ingo -- Sunahara, Roger K -- Gellman, Samuel H -- Pautsch, Alexander -- Steyaert, Jan -- Weis, William I -- Kobilka, Brian K -- GM083118/GM/NIGMS NIH HHS/ -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P01 GM75913/GM/NIGMS NIH HHS/ -- P60DK-20572/DK/NIDDK NIH HHS/ -- R01 GM068603/GM/NIGMS NIH HHS/ -- R01 GM083118/GM/NIGMS NIH HHS/ -- R01 GM083118-04/GM/NIGMS NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-21/NS/NINDS NIH HHS/ -- England -- Nature. 2011 Jan 13;469(7329):175-80. doi: 10.1038/nature09648.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21228869" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor ; Agonists/*chemistry/immunology/metabolism/*pharmacology ; Animals ; Binding Sites ; Camelids, New World ; Crystallography, X-Ray ; Drug Inverse Agonism ; Humans ; Immunoglobulin Fragments/*chemistry/*immunology/metabolism/pharmacology ; Ligands ; Models, Molecular ; Movement/drug effects ; Nanostructures/*chemistry ; Opsins/agonists/chemistry/metabolism ; Propanolamines/chemistry/metabolism/pharmacology ; Protein Conformation/drug effects ; Protein Stability/drug effects ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Viral Proteins/chemistry/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-25
    Description: Variable regions 1 and 2 (V1/V2) of human immunodeficiency virus-1 (HIV-1) gp120 envelope glycoprotein are critical for viral evasion of antibody neutralization, and are themselves protected by extraordinary sequence diversity and N-linked glycosylation. Human antibodies such as PG9 nonetheless engage V1/V2 and neutralize 80% of HIV-1 isolates. Here we report the structure of V1/V2 in complex with PG9. V1/V2 forms a four-stranded beta-sheet domain, in which sequence diversity and glycosylation are largely segregated to strand-connecting loops. PG9 recognition involves electrostatic, sequence-independent and glycan interactions: the latter account for over half the interactive surface but are of sufficiently weak affinity to avoid autoreactivity. The structures of V1/V2-directed antibodies CH04 and PGT145 indicate that they share a common mode of glycan penetration by extended anionic loops. In addition to structurally defining V1/V2, the results thus identify a paradigm of antibody recognition for highly glycosylated antigens, which-with PG9-involves a site of vulnerability comprising just two glycans and a strand.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406929/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406929/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉McLellan, Jason S -- Pancera, Marie -- Carrico, Chris -- Gorman, Jason -- Julien, Jean-Philippe -- Khayat, Reza -- Louder, Robert -- Pejchal, Robert -- Sastry, Mallika -- Dai, Kaifan -- O'Dell, Sijy -- Patel, Nikita -- Shahzad-ul-Hussan, Syed -- Yang, Yongping -- Zhang, Baoshan -- Zhou, Tongqing -- Zhu, Jiang -- Boyington, Jeffrey C -- Chuang, Gwo-Yu -- Diwanji, Devan -- Georgiev, Ivelin -- Kwon, Young Do -- Lee, Doyung -- Louder, Mark K -- Moquin, Stephanie -- Schmidt, Stephen D -- Yang, Zhi-Yong -- Bonsignori, Mattia -- Crump, John A -- Kapiga, Saidi H -- Sam, Noel E -- Haynes, Barton F -- Burton, Dennis R -- Koff, Wayne C -- Walker, Laura M -- Phogat, Sanjay -- Wyatt, Richard -- Orwenyo, Jared -- Wang, Lai-Xi -- Arthos, James -- Bewley, Carole A -- Mascola, John R -- Nabel, Gary J -- Schief, William R -- Ward, Andrew B -- Wilson, Ian A -- Kwong, Peter D -- R01 AI033292/AI/NIAID NIH HHS/ -- R01 AI084817/AI/NIAID NIH HHS/ -- RR017573/RR/NCRR NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Intramural NIH HHS/ -- England -- Nature. 2011 Nov 23;480(7377):336-43. doi: 10.1038/nature10696.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22113616" target="_blank"〉PubMed〈/a〉
    Keywords: AIDS Vaccines/chemistry/immunology ; Amino Acid Motifs ; Amino Acid Sequence ; Antibodies, Neutralizing/chemistry/*immunology ; Antibody Affinity/immunology ; Antibody Specificity/*immunology ; Antigen-Antibody Complex/chemistry/immunology ; Binding Sites, Antibody/immunology ; Conserved Sequence ; Crystallography, X-Ray ; Epitopes/chemistry/immunology ; Glycopeptides/chemistry/immunology ; Glycosylation ; HIV Antibodies/chemistry/*immunology ; HIV Envelope Protein gp120/*chemistry/*immunology ; HIV-1/*chemistry/*immunology ; Hydrogen Bonding ; Immune Evasion ; Models, Molecular ; Molecular Sequence Data ; Polysaccharides/chemistry/immunology ; Protein Structure, Quaternary ; Protein Structure, Tertiary
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-04-23
    Description: The functions of G-protein-coupled receptors (GPCRs) are primarily mediated and modulated by three families of proteins: the heterotrimeric G proteins, the G-protein-coupled receptor kinases (GRKs) and the arrestins. G proteins mediate activation of second-messenger-generating enzymes and other effectors, GRKs phosphorylate activated receptors, and arrestins subsequently bind phosphorylated receptors and cause receptor desensitization. Arrestins activated by interaction with phosphorylated receptors can also mediate G-protein-independent signalling by serving as adaptors to link receptors to numerous signalling pathways. Despite their central role in regulation and signalling of GPCRs, a structural understanding of beta-arrestin activation and interaction with GPCRs is still lacking. Here we report the crystal structure of beta-arrestin-1 (also called arrestin-2) in complex with a fully phosphorylated 29-amino-acid carboxy-terminal peptide derived from the human V2 vasopressin receptor (V2Rpp). This peptide has previously been shown to functionally and conformationally activate beta-arrestin-1 (ref. 5). To capture this active conformation, we used a conformationally selective synthetic antibody fragment (Fab30) that recognizes the phosphopeptide-activated state of beta-arrestin-1. The structure of the beta-arrestin-1-V2Rpp-Fab30 complex shows marked conformational differences in beta-arrestin-1 compared to its inactive conformation. These include rotation of the amino- and carboxy-terminal domains relative to each other, and a major reorientation of the 'lariat loop' implicated in maintaining the inactive state of beta-arrestin-1. These results reveal, at high resolution, a receptor-interacting interface on beta-arrestin, and they indicate a potentially general molecular mechanism for activation of these multifunctional signalling and regulatory proteins.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654799/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3654799/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shukla, Arun K -- Manglik, Aashish -- Kruse, Andrew C -- Xiao, Kunhong -- Reis, Rosana I -- Tseng, Wei-Chou -- Staus, Dean P -- Hilger, Daniel -- Uysal, Serdar -- Huang, Li-Yin -- Paduch, Marcin -- Tripathi-Shukla, Prachi -- Koide, Akiko -- Koide, Shohei -- Weis, William I -- Kossiakoff, Anthony A -- Kobilka, Brian K -- Lefkowitz, Robert J -- GM072688/GM/NIGMS NIH HHS/ -- GM087519/GM/NIGMS NIH HHS/ -- HL 075443/HL/NHLBI NIH HHS/ -- HL16037/HL/NHLBI NIH HHS/ -- HL70631/HL/NHLBI NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- P41 RR011823/RR/NCRR NIH HHS/ -- R01 HL016037/HL/NHLBI NIH HHS/ -- R01 HL070631/HL/NHLBI NIH HHS/ -- R01 NS028471/NS/NINDS NIH HHS/ -- U01 GM094588/GM/NIGMS NIH HHS/ -- U54 GM074946/GM/NIGMS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2013 May 2;497(7447):137-41. doi: 10.1038/nature12120. Epub 2013 Apr 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23604254" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arrestins/*chemistry/immunology/*metabolism ; Crystallography, X-Ray ; Humans ; Immunoglobulin Fab Fragments/chemistry/immunology/metabolism ; Models, Molecular ; Phosphopeptides/*chemistry/*metabolism ; Phosphorylation ; Protein Binding ; Protein Conformation ; Protein Stability ; Rats ; Receptors, Vasopressin/*chemistry ; Rotation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-10-28
    Description: Negative-sense RNA viruses, such as influenza, encode large, multidomain RNA-dependent RNA polymerases that can both transcribe and replicate the viral RNA genome. In influenza virus, the polymerase (FluPol) is composed of three polypeptides: PB1, PB2 and PA/P3. PB1 houses the polymerase active site, whereas PB2 and PA/P3 contain, respectively, cap-binding and endonuclease domains required for transcription initiation by cap-snatching. Replication occurs through de novo initiation and involves a complementary RNA intermediate. Currently available structures of the influenza A and B virus polymerases include promoter RNA (the 5' and 3' termini of viral genome segments), showing FluPol in transcription pre-initiation states. Here we report the structure of apo-FluPol from an influenza C virus, solved by X-ray crystallography to 3.9 A, revealing a new 'closed' conformation. The apo-FluPol forms a compact particle with PB1 at its centre, capped on one face by PB2 and clamped between the two globular domains of P3. Notably, this structure is radically different from those of promoter-bound FluPols. The endonuclease domain of P3 and the domains within the carboxy-terminal two-thirds of PB2 are completely rearranged. The cap-binding site is occluded by PB2, resulting in a conformation that is incompatible with transcription initiation. Thus, our structure captures FluPol in a closed, transcription pre-activation state. This reveals the conformation of newly made apo-FluPol in an infected cell, but may also apply to FluPol in the context of a non-transcribing ribonucleoprotein complex. Comparison of the apo-FluPol structure with those of promoter-bound FluPols allows us to propose a mechanism for FluPol activation. Our study demonstrates the remarkable flexibility of influenza virus RNA polymerase, and aids our understanding of the mechanisms controlling transcription and genome replication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hengrung, Narin -- El Omari, Kamel -- Serna Martin, Itziar -- Vreede, Frank T -- Cusack, Stephen -- Rambo, Robert P -- Vonrhein, Clemens -- Bricogne, Gerard -- Stuart, David I -- Grimes, Jonathan M -- Fodor, Ervin -- 075491/Z/04/Wellcome Trust/United Kingdom -- 092931/Z/10/Z/Wellcome Trust/United Kingdom -- G1000099/Medical Research Council/United Kingdom -- G1100138/Medical Research Council/United Kingdom -- MR/K000241/1/Medical Research Council/United Kingdom -- England -- Nature. 2015 Nov 5;527(7576):114-7. doi: 10.1038/nature15525. Epub 2015 Oct 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK. ; Division of Structural Biology, Henry Wellcome Building for Genomic Medicine, University of Oxford, Oxford OX3 7BN, UK. ; European Molecular Biology Laboratory, Grenoble Outstation and University Grenoble Alpes-Centre National de la Recherche Scientifique-EMBL Unit of Virus Host-Cell Interactions, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble Cedex 9, France. ; Diamond Light Source Ltd, Harwell Science &Innovation Campus, Didcot OX11 0DE, UK. ; Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26503046" target="_blank"〉PubMed〈/a〉
    Keywords: Apoenzymes/chemistry/metabolism ; Binding Sites ; Crystallography, X-Ray ; Endonucleases/chemistry/metabolism ; Enzyme Activation ; Influenzavirus C/*enzymology ; Models, Molecular ; Peptide Chain Initiation, Translational ; Promoter Regions, Genetic/genetics ; Protein Binding ; Protein Structure, Tertiary ; Protein Subunits/chemistry/metabolism ; RNA Caps/metabolism ; RNA Replicase/*chemistry/metabolism ; RNA, Viral/biosynthesis/metabolism ; Ribonucleoproteins/chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2010-10-15
    Description: The pre-T-cell antigen receptor (pre-TCR), expressed by immature thymocytes, has a pivotal role in early T-cell development, including TCR beta-selection, survival and proliferation of CD4(-)CD8(-) double-negative thymocytes, and subsequent alphabeta T-cell lineage differentiation. Whereas alphabetaTCR ligation by the peptide-loaded major histocompatibility complex initiates T-cell signalling, pre-TCR-induced signalling occurs by means of a ligand-independent dimerization event. The pre-TCR comprises an invariant alpha-chain (pre-Talpha) that pairs with any TCR beta-chain (TCRbeta) following successful TCR beta-gene rearrangement. Here we provide the basis of pre-Talpha-TCRbeta assembly and pre-TCR dimerization. The pre-Talpha chain comprised a single immunoglobulin-like domain that is structurally distinct from the constant (C) domain of the TCR alpha-chain; nevertheless, the mode of association between pre-Talpha and TCRbeta mirrored that mediated by the Calpha-Cbeta domains of the alphabetaTCR. The pre-TCR had a propensity to dimerize in solution, and the molecular envelope of the pre-TCR dimer correlated well with the observed head-to-tail pre-TCR dimer. This mode of pre-TCR dimerization enabled the pre-Talpha domain to interact with the variable (V) beta domain through residues that are highly conserved across the Vbeta and joining (J) beta gene families, thus mimicking the interactions at the core of the alphabetaTCR's Valpha-Vbeta interface. Disruption of this pre-Talpha-Vbeta dimer interface abrogated pre-TCR dimerization in solution and impaired pre-TCR expression on the cell surface. Accordingly, we provide a mechanism of pre-TCR self-association that allows the pre-Talpha chain to simultaneously 'sample' the correct folding of both the V and C domains of any TCR beta-chain, regardless of its ultimate specificity, which represents a critical checkpoint in T-cell development. This unusual dual-chaperone-like sensing function of pre-Talpha represents a unique mechanism in nature whereby developmental quality control regulates the expression and signalling of an integral membrane receptor complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pang, Siew Siew -- Berry, Richard -- Chen, Zhenjun -- Kjer-Nielsen, Lars -- Perugini, Matthew A -- King, Glenn F -- Wang, Christina -- Chew, Sock Hui -- La Gruta, Nicole L -- Williams, Neal K -- Beddoe, Travis -- Tiganis, Tony -- Cowieson, Nathan P -- Godfrey, Dale I -- Purcell, Anthony W -- Wilce, Matthew C J -- McCluskey, James -- Rossjohn, Jamie -- England -- Nature. 2010 Oct 14;467(7317):844-8. doi: 10.1038/nature09448.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Protein Crystallography Unit, Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, Victoria 3800, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20944746" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray ; Gene Rearrangement, T-Lymphocyte/genetics ; Humans ; Models, Molecular ; Mutation ; Protein Folding ; *Protein Multimerization ; Protein Structure, Tertiary ; Receptors, Antigen, T-Cell/*chemistry/genetics/*metabolism ; Receptors, Antigen, T-Cell, alpha-beta/chemistry/metabolism ; Signal Transduction ; Solutions ; T-Lymphocytes/cytology/immunology/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-01-08
    Description: G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the beta(2) adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2805469/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bokoch, Michael P -- Zou, Yaozhong -- Rasmussen, Soren G F -- Liu, Corey W -- Nygaard, Rie -- Rosenbaum, Daniel M -- Fung, Juan Jose -- Choi, Hee-Jung -- Thian, Foon Sun -- Kobilka, Tong Sun -- Puglisi, Joseph D -- Weis, William I -- Pardo, Leonardo -- Prosser, R Scott -- Mueller, Luciano -- Kobilka, Brian K -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 GM056169/GM/NIGMS NIH HHS/ -- R01 GM056169-13/GM/NIGMS NIH HHS/ -- R21 MH082313/MH/NIMH NIH HHS/ -- R21 MH082313-01A1/MH/NIMH NIH HHS/ -- R37 NS028471/NS/NINDS NIH HHS/ -- R37 NS028471-19/NS/NINDS NIH HHS/ -- England -- Nature. 2010 Jan 7;463(7277):108-12. doi: 10.1038/nature08650.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054398" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenergic beta-2 Receptor Agonists ; Adrenergic beta-2 Receptor Antagonists ; Allosteric Regulation/drug effects ; Binding Sites ; Crystallography, X-Ray ; Drug Inverse Agonism ; Ethanolamines/pharmacology ; Formoterol Fumarate ; Humans ; Ligands ; Lysine/analogs & derivatives/metabolism ; Methylation ; Models, Molecular ; Mutant Proteins ; Nuclear Magnetic Resonance, Biomolecular ; Propanolamines/metabolism/pharmacology ; Protein Structure, Tertiary/drug effects ; Receptors, Adrenergic, beta-2/*chemistry/*metabolism ; Static Electricity ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2008-11-07
    Description: Xeroderma pigmentosum is a monogenic disease characterized by hypersensitivity to ultraviolet light. The cells of xeroderma pigmentosum patients are defective in nucleotide excision repair, limiting their capacity to eliminate ultraviolet-induced DNA damage, and resulting in a strong predisposition to develop skin cancers. The use of rare cutting DNA endonucleases-such as homing endonucleases, also known as meganucleases-constitutes one possible strategy for repairing DNA lesions. Homing endonucleases have emerged as highly specific molecular scalpels that recognize and cleave DNA sites, promoting efficient homologous gene targeting through double-strand-break-induced homologous recombination. Here we describe two engineered heterodimeric derivatives of the homing endonuclease I-CreI, produced by a semi-rational approach. These two molecules-Amel3-Amel4 and Ini3-Ini4-cleave DNA from the human XPC gene (xeroderma pigmentosum group C), in vitro and in vivo. Crystal structures of the I-CreI variants complexed with intact and cleaved XPC target DNA suggest that the mechanism of DNA recognition and cleavage by the engineered homing endonucleases is similar to that of the wild-type I-CreI. Furthermore, these derivatives induced high levels of specific gene targeting in mammalian cells while displaying no obvious genotoxicity. Thus, homing endonucleases can be designed to recognize and cleave the DNA sequences of specific genes, opening up new possibilities for genome engineering and gene therapy in xeroderma pigmentosum patients whose illness can be treated ex vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Redondo, Pilar -- Prieto, Jesus -- Munoz, Ines G -- Alibes, Andreu -- Stricher, Francois -- Serrano, Luis -- Cabaniols, Jean-Pierre -- Daboussi, Fayza -- Arnould, Sylvain -- Perez, Christophe -- Duchateau, Philippe -- Paques, Frederic -- Blanco, Francisco J -- Montoya, Guillermo -- England -- Nature. 2008 Nov 6;456(7218):107-11. doi: 10.1038/nature07343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Macromolecular Crystallography Group, Spanish National Cancer Research Centre (CNIO), c/Melchor Fdez. Almagro 3, 28029 Madrid, Spain.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18987743" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; CHO Cells ; Cell Line ; Cricetinae ; Cricetulus ; Crystallography, X-Ray ; DNA/chemistry/*genetics/*metabolism ; DNA Repair ; DNA Restriction Enzymes/*chemistry/genetics/*metabolism/toxicity ; DNA-Binding Proteins/*genetics ; Enzyme Stability ; *Genetic Engineering ; Humans ; Models, Molecular ; Phosphorylation ; Protein Multimerization ; Substrate Specificity ; Xeroderma Pigmentosum/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...