ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0819
    Keywords: Key words Lascar Volcano ; Lava domes ; Degassing ; Explosive eruptions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Lascar Volcano (5592 m; 23°22'S, 67°44'W) entered a new period of vigorous activity in 1984, culminating in a major explosive eruption in April 1993. Activity since 1984 has been characterised by cyclic behaviour with recognition of four cycles up to the end of 1993. In each cycle a lava dome is extruded in the active crater, accompanied by vigorous degassing through high-temperature, high-velocity fumaroles distributed on and around the dome. The fumaroles are the source of a sustained steam plume above the volcano. The dome then subsides back into the conduit. During the subsidence phase the velocity and gas output of the fumaroles decrease, and the cycle is completed by violent explosive activity. Subsidence of both the dome and the crater floor is accommodated by movement on concentric, cylindrical or inward-dipping conical fractures. The observations are consistent with a model in which gas loss from the dome is progressively inhibited during a cycle and gas pressure increases within and below the lava dome, triggering a large explosive eruption. Factors that can lead to a decrease in gas loss include a decrease in magma permeability by foam collapse, reduction in permeability due to precipitation of hydrothermal minerals in the pores and fractures within the dome and in country rock surrounding the conduit, and closure of open fractures during subsidence of the dome and crater floor. Dome subsidence may be a consequence of reduction in magma porosity (foam collapse) as degassing occurs and pressurisation develops as the permeability of the dome and conduit system decreases. Superimposed upon this activity are small explosive events of shallow origin. These we interpret as subsidence events on the concentric fractures leading to short-term pressure increases just below the crater floor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 64 (1975), S. 497-523 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract Vulsini Volcano, Bolsena District, central Italy is a Quaternary centre eruptions of which have been dominated by the production of ignimbrites. Stratigraphic studies show that there are six major ignimbrite units with individual minimum volumes of 0.5 to 3 km3 and a large number of smaller ignimbrite units, together with pyroclastic surge and pyroclastic fall deposits. It is estimated that at least 90% of the volcanic products are pyroclastic producing a low profile volcano with 1 to 5
    Abstract: Riassunto Il vulcano di Vulsini, nell'Italia Centrale, è un centro di epoca quaternaria nel quale la produzione di colate piroclastiche è stata prédominante. Vi si possono riconoscere sei maggiori ignimbriti di larga mole (volumi 0.5–3 Km3) oltre a un gran numéro di ignimbriti di minor volume, associate a depositi di “pyroclastic fall”, di ceneri minute e a depositi di “spinta” piroclastica (base surge) ad alta temperatura, formatesi nelle stesse eruzioni. Le ignimbriti si presentano sia saldate o non saldate e sono scarsemente separate. Ognuno di esse è composto da un insieme di colate individuali la cui base è segnata da uno strato basilare a grana più fine, e nelle quali sono comuni larghi frammenti di pomice a gradazione inversa e larghi frammenti litici di gradazione normale. Per quanto riguarda tutti le maggiori ignimbriti, la mole massima dei frammenti di roccia estranea decresce con l'allontanarsi dalla caldera di Latera, ad eccezione dell'ignimbrite C, per la quale questo avviene allontanandosi dalla caldera di Bolsena. Analisi di frammenti di pomice proveniente dalle ignimbriti mostrano la presenza di una vasta gamma die elementi (SiO2 49%–62%), tuttavia dal confronta fra lave e materiali piroclastici risulta che i magmi che formano le rocce piroclastiche sono, in generale, molto più evoluti. La grossezza della grana e le caratteristiche morfologiche delle ignimbriti fanno ritenere che la loro origine sia dovuta al depositarsi di dispersioni di gas densi, poco espansi e di solidi, e che le colate piroclastiche siano da considerarsi come colate di detriti, lubrificati dal gas.
    Notes: Zusammenfassung Der Vulkan Vulsini in Mittelitalien entstand im Quartär und wird von pyroklastischen Lavadecken geprägt. Sechs ausgedehnte Ignimbritmassen (Mengen 0,5 bis 4 km3) und eine gro\e Anzahl kleinerer Ignimbritkörper wurden festgestellt. Die Ignimbrite kommen zusammen mit Pyroklastiten, feinen Aschen und einigen hochtemperierten pyroklastischen „surge“-Absätzen vor. Die Ignimbrite sind schlecht sortiert, verschwei\t und unverschwei\t. Jeder Ignimbrit besteht aus vielen Lagen, und der Boden jeder Lage ist durch eine feinkörnige Grundlage markiert. Inverse Gradierung gro\er Bimsstein-Fragmente und normale Gradierung gro\er Klastite kommen häufig vor. Die grö\ten Fremdgesteins-Fragmente nehmen mit der Entfernung von der Caldera di Latera ab, nur Ignimbrit C verringert sich mit der Entfernung von der Caldera di Bolsena. Analysen von Bimsstein-Fragmenten der Ignimbrite zeigen eine wechselnde Zusammensetzung (SiO2 49–62%). Ein Vergleich der Zusammensetzung der Lava und der Pyroklastika zeigt jedoch, da\ die Magmen, die das pyroklastische Gestein bilden, allgemein kieselsäurereicher entwickelt sind. Die Korngrö\e und die Morphologie der Ignimbrite deuten darauf hin, da\ sie aus dichten Gas/Feststoff-Dispersionen deponiert worden sind, und pyroklastische Lagen werden als durch Gas transportierte Gesteinstrümmer gedeutet.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Bulletin of volcanology 56 (1994), S. 159-169 
    ISSN: 1432-0819
    Keywords: biturcation ; volcanic plumes ; crosswind ; satellite images ; tephta fallout ; bilobate deposits ; flume experiments
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Bent-over buoyant jets distorted by a crosscurrent develop a vortex pair structure and can bifurcate to produce two distinct lobes which diverge from one another downwind. The region downwind of the source between the lobes has relatively low proportions of discharged fluid. Factors invoked by previous workers to cause or enhance bifurcation include buoyancy, release of latent heat at the plume edge by evaporating water droplets, geometry and orientation of the source, and the encounter with a density interface on the rising path of the plume. We suggest that the pressure distribution around the vortex pair of a rising plume may initially trigger bifurcation. We also report new experimental observations confirming that bifurcation becomes stronger for stronger bent-over plumes, identifying that bifurcation can also occur for straight-edged plumes but gradually disappears for stronger plumes which form a gravity current at their final level and spread for a significant distance against the current. Observations from satellites and the ground are reviewed and confirm that volcanic plumes can show bifurcation and a large range of bifurcation angles. Many of the bifurcating plumes spread out at the tropopause level and suggest the tropopause may act on the plumes as a density interface enhancing bifurcation. Even for quite moderate bifurcation angles, the two plume lobes become rapidly separated downwind by distances of tens of kilometers. Such bifurcating plumes drifting apart can only result in bilobate tephra fall deposits. The tephra fall deposit from the 16 km elevation, SE spreading, bifurcating volcanic plume erupted on 15 May 1981 from Mt Pagan was sampled by previous workers and clearly displayed bilobate characteristics. Examples of bilobate tephra fall deposits are reviewed and their origin briefly discussed. Bilobate deposits are common and may result from many causes. Plume bifurcation should be considered one of the possible mechanisms which can account for come examples of bilobate tephra fall deposits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0819
    Keywords: Key words Rhyolite ; Volatiles ; Vent ; Eruption transitions ; Shear ; Permeable ; Tuffisite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5–3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20–40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable, collapsing foams, implying the former existence of channels for gas migration. Local channelling of gas into the country rocks is suggested by the presence of sub-horizontal syn-eruptive rhyolitic tuffisite veins which depart from the vent margin and invade the adjacent country rock. In the central part of the vent, similar local channelling of gas is indicated by steep syn-eruption tuffisite veins which cut the rhyolite itself. We conclude that the suppression of explosive eruption resulted from gas separation from the ascending magma and vent structure by shear-related porous flow and channelling of gas through tuffisite veins. These mechanisms of gas loss may be responsible for the commonly observed transition from explosive to effusive behaviour during the eruption of silicic magma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-0819
    Keywords: Key words Co-ignimbrite plumes ; Mount St. Helens ; Hydraulic jump ; Topography ; Theoretical models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Four co-ignimbrite plumes were generated along the flow path of the pyroclastic flow of 7 August 1980 at Mount St. Helens. Three of the plumes were generated in discrete pulses which can be linked to changes in slope along the channel. One plume was generated at the mouth of the channel where the flow decelerated markedly as it moved onto the lower slopes of the pumice plain. Plume generation here may be triggered by enhanced mixing due to a hydraulic jump associated with an abrupt slope change. Measurements of plume ascent velocity and width show that the co-ignimbrite plumes increased in velocity with height. The plumes have initial velocities of 1–2 m/s. Two of the plumes reached a velocity maximum (4.6 and 8.8 m/s, respectively, at heights of 270 and 315 m above the flow) and thereafter decelerated. The other plumes reached velocities of 6.2 and 13 m/s. The four plumes become systematically less energetic downstream as measured by their ascent rates, which can be interpreted as a consequence of decreasing interaction of the pyroclastic flow front with the atmosphere. Theoretical models of both co-ignimbrite plumes and discrete co-ignimbrite clouds assume that there is no initial momentum, and both are able to predict the observed acceleration stage. The rising plumes mix with and heat air and sediment out particles causing their buoyancy to increase. Theoretical models agree well with observations and suggest that the initial motion of the ascending material is best described as a discrete thermal cloud which expands as it entrains air, whereas the subsequent motion of the head may become influenced by material supplied from the following plume. The models agree well with observations for an initial temperature of the ash and air mixture in the range of 500–600 K, which is in turn consistent with the measured initial ash temperature of around 920 K. Ash masses of 3.4×105 to 1.8×106 kg are estimated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 85 (1984), S. 300-309 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The dynamical behaviour of basaltic magma chambers is fundamentally controlled by the changes that occur in the density of magma as it crystallizes. In this paper the term fractionation density is introduced and defined as the ratio of the gram formula weight to molar volume of the chemical components in the liquid phase that are being removed by fractional crystallization. Removal of olivine and pyroxene, whose values of fractionation density are larger than the density of the magma, causes the density of residual liquid to decrease. Removal of plagioclase, with fractionation density less than the magma density, can cause the density of residual liquid to increase. During the progressive differentiation of basaltic magma, density decreases during fractionation of olivine, olivine-pyroxene, and pyroxene assemblages. When plagioclase joins these mafic phases magma density can sometimes increase leading to a density minimum. Calculations of melt density changes during fractionation show that compositional effects on density are usually greater than associated thermal effects. In the closed-system evolution of basaltic magma, several stages of distinctive fluid dynamical behaviour can be recognised that depend on the density changes which accompany crystallization, as well as on the geometry of the chamber. In an early stage of the evolution, where olivine and/or pyroxenes are the fractionating phases, compositional stratification can occur due to side-wall crystallization and replenishment by new magma, with the most differentiated magma tending to accumulate at the roof of the chamber. When plagioclase becomes a fractionating phase a zone of well-mixed magma with a composition close to the density minimum of the system can form in the chamber. The growth of a zone of constant composition destroys the stratification in the chamber. A chamber of well-mixed magma is maintained while further differentiation occurs, unless the walls of the chamber slope inwards, in which case dense boundary layer flows can lead to stable stratification of cool, differentiated magma at the floor of the chamber. In a basaltic magma chamber replenished by primitive magma, the new magma ponds at the base and evolves until it reaches the same density and composition as overlying magma. Successive cycles of replenishment of primitive magma can also form compositional zonation if successive cycles occur before internal thermal equilibrium is reached in a chamber. In a chamber containing well-mixed, plagioclase — saturated magma, the primitive magma can be either denser or lighter than the resident magma. In the first case, the new magma ponds at the base and fractionates until it reaches the same density as the evolved magma. Mixing then occurs between magmas of different temperatures and compositions. In the second case a turbulent plume is generated that causes the new magma to mix immediately with the resident magma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 75 (1981), S. 279-289 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract This paper describes a fluid dynamical investigation of the influx of hot, dense ultrabasic magma into a reservoir containing lighter, fractionated basaltic magma. This situation is compared with that which develops when hot salty water is introduced under cold fresh water. Theoretical and empirical models for salt/water systems are adapted to develop a model for magmatic systems. A feature of the model is that the ultrabasic melt does not immediately mix with the basalt, but spreads out over the floor of the chamber, forming an independent layer. A non-turbulent interface forms between this layer and the overlying magma layer across which heat and mass are transferred by the process of molecular diffusion. Both layers convect vigorously as heat is transferred to the upper layer at a rate which greatly exceeds the heat lost to the surrounding country rock. The convection continues until the two layers have almost the same temperature. The compositions of the layers remain distinct due to the low diffusivity of mass compared to heat. The temperatures of the layers as functions of time and their cooling rate depend on their viscosities, their thermal properties, the density difference between the layers and their thicknesses. For a layer of ultrabasic melt (18% MgO) a few tens of metres thick at the base of a basaltic (10% MgO) magma chamber a few kilometres thick, the temperature of the layers will become nearly identical over a period of between a few months and a few years. During this time the turbulent convective velocities in the ultrabasic layer are far larger than the settling velocity of olivines which crystallise within the layer during cooling. Olivines only settle after the two layers have nearly reached thermal equilibrium. At this stage residual basaltic melt segregates as the olivines sediment in the lower layer. Depending on its density, the released basalt can either mix convectively with the overlying basalt layer, or can continue as a separate layer. The model provides an explanation for large-scale cyclic layering in basic and ultrabasic intrusions. The model also suggests reasons for the restriction of erupted basaltic liquids to compositions with MgO〈10% and the formation of some quench textures in layered igneous rocks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 132 (1998), S. 21-33 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Xenolith assimilation has been simulated with experiments involving melting wax spheres into hot water and aqueous solutions and characterised by a theoretical analysis. Both the cases of neutrally buoyant stationary spheres and spheres sinking through the hot host fluid are examined. Melt generated on a sphere's surface flows (compositional convection) in two regimes; as a sheet over one hemisphere and then detaching as finger plumes from the other. Positional variations in the melting rate are dominantly controlled by differences in the melt layer thickness which influence the thermal gradient and heat flux across the layer. The theoretical model predicts melt layer thicknesses and the heat flux from the surrounding fluid. Calculated melting rates agree well with experimental measurements. Partial melting of non-eutectic compositions produces a layer of crystal-melt mush at the xenolith's surface. The theoretical analysis is extended to account for variation in rheological properties across the mush layer. When stoped into typical magmas, xenoliths of common continental crust lithologies are predicted to melt at rates in the order of 2 mm/hour. Thicknesses of the mobile mush layer around xenoliths are predicted to be typically a few centimetres. Relatively mafic lithologies can melt quicker than silicic compositions because, although they are typically more refractory, their lower melt viscosities result in thinner mush layers and so higher heat fluxes. Especially quick melting of water-saturated lithologies occurs as a consequence of both the reduction in melting temperatures and melt viscosities. Due to hot ambient conditions in the lower continental crust the assimilation of xenoliths into underplated basaltic magma can be very rapid. For granulites and mafic-granulites the predicted melting rates are up to 17 mm/hour. Fast rates of melting and efficient mixing of melt into the host magma indicate that assimilation of xenoliths will have a significant influence on the compositional and thermal evolution of magmas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2007-05-22
    Print ISSN: 0930-7575
    Electronic ISSN: 1432-0894
    Topics: Geosciences , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...