ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-11-22
    Description: Surface faulting earthquakes are known to cluster in time from historical and palaeoseismic studies, but the mechanism(s) responsible for clustering, such as fault interaction, strain-storage, and evolving dynamic topography, are poorly quantified, and hence not well understood. We present a quantified replication of observed earthquake clustering in central Italy. Six active normal faults are studied using 36Cl cosmogenic dating, revealing out-of-phase periods of high or low surface slip-rate on neighboring structures that we interpret as earthquake clusters and anticlusters. Our calculations link stress transfer caused by slip averaged over clusters and anti-clusters on coupled fault/shear-zone structures to viscous flow laws. We show that (1) differential stress fluctuates during fault/shear-zone interactions, and (2) these fluctuations are of sufficient magnitude to produce changes in strain-rate on viscous shear zones that explain slip-rate changes on their overlying brittle faults. These results suggest that fault/shear-zone interactions are a plausible explanation for clustering, opening the path towards process-led seismic hazard assessments.
    Description: Published
    Description: 7126
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Keywords: Crustal Deformation ; Active Faults ; Earthquake clustering ; 36-Chlorine ; 04.04. Geology ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-19
    Description: Fluid flow pathway characterisation is critical to geothermal exploration and exploitation. In fractured geothermal reservoirs, it requires a good understanding of the structural evolution together with the fracture distribution and fluid flow properties. A fieldwork-based approach has been used to evaluate the potential fracture permeability characteristics of a typical high-temperature geothermal reservoir in the Southern Negros Geothermal Field, Philippines. This is a liquid-dominated resource hosted in the andesitic Quaternary Cuernos de Negros Volcano, Negros Island. Fieldwork reveals two main fracture groups based on fault rock characteristics, alteration type, relative age of deformation, and associated thermal manifestation, with the youngest fractures mainly related to the development of the current geothermal system. Fault kinematics, cross-cutting relationships, and palaeostress analysis suggest at least two distinct deformation events under changing stress fields since probably the Pliocene. We propose that this deformation history was influenced by the development of the Cuernos de Negros Volcano and the northward propagation of a major neotectonic structure located to the northwest, the Yupisan Fault. A combined slip and dilation tendency analysis of the mapped faults indicates that NW-SE structures should be particularly promising drilling targets under the inferred current stress regime, consistent with drilling results. However, existing boreholes also suggest that NE–SW structures can act as effective channels for geothermal fluids. Our observations suggest that these features were initiated as the dominant features in the older kinematic system and have then been reactivated at the present day.
    Print ISSN: 1468-8115
    Electronic ISSN: 1468-8123
    Topics: Geosciences
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...