ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Araucaria (seed viability)  (1)
  • Germination  (1)
  • Scadoxus (seed viability)  (1)
  • Springer  (2)
  • Frontiers Media
  • 1
    ISSN: 1432-2048
    Keywords: Araucaria (seed viability) ; Germination (recalcitrant seeds) ; Landolphia (seed viability) ; Scadoxus (seed viability) ; Seed (desiccation sensitivity) ; Viability (retention/loss)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The storage behaviour of recalcitrant seeds was assessed using three diverse species: a gymnosperm, Araucaria angustifolia (Bert.) O. Kuntze; a herbaceous monocotyledon, Scadoxus membranaceus (Bak.) Friis Nordal; and a woody dicotyledon, Landolphia kirkii Dyer. Seeds were stored under conditions of high relative humidities that maintained seed moisture content and under low relative humidities that caused drying. At regular intervals moisture content was determined, germinability assessed and the ultrastructure of radicle meristem cells examined. Under storage at high relative humidity, seed moisture content was maintained at the original level and subcellular germination events were initiated in the short-term. Such seeds showed enhanced rates of germination when removed from storage and planted. Long-term storage under these conditions resulted in the initiation of subcellular damage which intensified with time and ultimately resulted in the loss of viability. The rate at which germination events proceeded varied among the three species, and could be directly correlated with the period of viability retention under humid storage conditions. Storage under desiccating conditions resulted in subcellular damage and rapid loss of viability. The rate at which the seeds dried varied among the three species. The proportion of water loss tolerated by the different species before loss of viability, correlated with the rate of drying. The storage behaviour of the seeds of these three species is discussed in terms of a previously described model.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5052
    Keywords: Electrolyte leakage ; Germination ; Glutathione reductase ; Growth ; Photochemistry ; Pigments ; Serotinous species ; UV-radiation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Dry seeds of Leucadendron laureolum (Lam.) Fourc. (Proteaceae) were exposed for different intervals (range: 7 to 84 days) to visible, UV-A and UV-B radiation of different biologically effective dose (range: 0 to 11.43 kJ m-2 d-1). Changes in seed germination, physiology and ultrastructure, and residual UV effects on seedling performance, were examined. Germination was depressed in seeds following short (7-day) exposures to UV radiation. This depression was intensified with increased UV exposure dose, and most pronounced at shorter UV-B wavelengths. Also glutathione reductase (GR) activities increased in seeds exposed to shorter UV-B wavelengths, but these were unaffected by irradiation dose level in the UV-B range. Electrolyte leakage rates from UV-irradiated seeds were unaltered, which indicated that germination depression did not result from intrinsic membrane damage. The reversal of germination depression (UV-induced dormancy) in UV-irradiated seeds by red light pointed to the possible involvement of phytochrome in this photo-response. Germination depression disappeared in seeds after 56-days irradiation, possibly due to photoreceptor damage by excess UV light. At this stage, all UV irradiated seeds, irrespective of treatment wavelength or dose level, exhibited increased electrolyte leakage rates, which indicated membrane perturbation. Also, increased GR activities were observed in irradiated seeds, but these were proportionately smaller in seeds exposed to shorter wavelength UV-B radiation (9.1 to 35.8% increase) than longer wavelength UV-A (73.4% increase) and visible (97.7% increase) radiation. This implied a metabolic limitation for scavenging of free radicals and peroxides in aging seeds exposed to UV-B radiation, which pointed to accelerated seed deterioration. It was indirectly supported by ultrastructural evidence of sub-cellular damage (lipid coagulation and plasmalemma withdrawal from cell walls) in embryonic tissues of seeds after 84 days UV-B exposure, and reflected in decreased leaf numbers, photochemical efficiencies, and foliar chlorophyll a and carotenoid levels in seedlings cultured from these seeds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...