ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring  (91)
  • 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes
  • 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas
  • 04.07. Tectonophysics
  • 05. General::05.02. Data dissemination::05.02.01. Geochemical data
  • E31
  • J24
Collection
  • 1
    Publication Date: 2012-02-03
    Description: Marsili is a back-arc volcano with a dominant tholeitic petrochemical affinity. This seamount, having an elevation of about 3000 m above the sea floor, an approximate length of 60 km in a NNE-SSW direction and a mean width of 25 km, is the biggest European volcano. The opening of the Marsili basin was related to a sharp acceleration of the roll-back of the Ionian lithosphere subducting below the Southern Tyrrhenian Basin. On the basis of all the geophysical, geological and petrological information knower, Marsili volcano can be considered as being the key needed to understand the dynamics of spreading and back-arc lithosphere formation in this Tyrrhenian sector. However, despite its importance in the Mediterranean geodynamical contest the seismo-volcanic and hydrothermal activity of this seamount remained little known. For this reason in 2006, in the framework of PRO.ME.TH.E.US project (Program of Mediterranean Exploration for Thermal Energy Use), founded by PRAMA s.r.l (Italy) (now Eurobuilding SpA), a multi-disciplinary research was conducted on the Marsili volcano area. In the framework of this project the INGV’s staff placed a broadband OBS/H (Ocean Bottom Seismometer with Hydrophone) on Marsili’s flat top (39° 16,383’ lat. Nord, 14° 23,588’ long. Est.) at a depth of 790 m. For this experiment the OBS/H operated from July 12th to 21st 2006. In only 9 days the submarine seismic station recorded more than 1000 seismo-volcanic and hydrothermal signals. By comparing the signals recorded with typical volcanic seismic activity, we group the recorded signals into: Volcano-Tectonic type B (817 VTB) events, occurrences of High Frequency Tremor (159 HFT) and quasi-monochromatic Short Duration Events (32 SDE). The small-magnitude VT-B swarms, having a frequency band of 2 - 6 Hz and a mean length of about 30 seconds, were almost all recorded during the first 7 days. During the last 2 days, the OBS/H mainly recorded HFT events with frequencies of over 40 Hz and few minutes length. On February 14th 2010, about three years and half after the first monitoring campaign another OBS/H was deployed in the same point for a long monitoring campaign (9 mouths). For this experiment the OBS/H was equipped with a Guralp CMG40T-OBS 3C seismometer, with flat transfer function in the band 60 s - 100 Hz, housed in a glass sphere with an autoleveling system that allows the sensor leveling in a range of ± 70° from the vertical. To monitor high frequency seismic and pressure signals the OBS/H was also equipped with a HTI-04- PCA/ULF Hydrophone, with a flat transfer function in the band 100s - 8 kHz. Both the signals were recorded by a 4 channels 21 bits SEND Geolon-MLS datalogger, at a sampling frequency of 200 Hz. During the nine months of the monitoring experiment the OBS/H recorded some thousand of little magnitude events very similar to that of the first experiment. The signals recorded in both the experiments were analyzed using polarization, spectral and clustering techniques. Both methods and results will be presented during the workshop.
    Description: Published
    Description: Salina Islands, Italy
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: open
    Keywords: Seismo-volcanic signals ; Marsili Seamount ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Conference paper
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Description: The Marsili, the biggest European volcano, can be considered as being the key needed to understand the dynamics of spreading and back-arc lithosphere formation in the Tyrrhenian sector (Marani et al., 2004, and references therein). Despite of its dimensions, due to its geographical position, it is very difficult to monitor (D'Alessandro et al., 2011) and it still remains little known. In 2006 the INGV staff deployed a broadband OBS/H (Mangano et al., 2011) on the Marsili’s flat top at a depth of about 790 m. In only 9 days, the instrument recorded about 800 seismo-volcanic events (D'Alessandro et al., 2009). This experiment, for the first time, revealed an intense seismo-volcanic activity of the Marsili. However, the short duration of the experiment didn’t allow to characterize, in an exhaustively way, the seismo-volcanic activities currently in act on the seamount. For this reason, on February the 14th 2010 another OBS/H was deployed in the same point for a long time experiment (9 months). During the monitoring campaign, the submarine station recorded some thousands of local little magnitude events. The entire data set was classified, on the basis of the time and frequency domain appearances following Wasserman (2002); we recognized 589 Volcano-Tectonic type A (VT-A) events and 1952 Volcano-Tectonic type B (VT-B) events (Fig. 1), measuring their local magnitude following Havskov et al. (2003). The seismogram of a typical VT-A event is dominated by P and S phases and by a short coda (Fig. 1a). These events are characterized by P phases with impulsive and high-amplitude onsets. The spectrogram shows broadband body phases with very high frequency and energy content extending up to 80 Hz (Fig. 1c). The VT-A events recorded have local magnitude between 0.5 and 3 and time length between 40 and 70 s. For these earthquakes, separation of P and S waves is clear and TS-TP is between 0.35 and 0.55 s. Their average recurrence time is about 2-3 events a week, with moderate variation in the observed period. The VT-B events are characterized by P phases with emergent and low-amplitude onsets (Fig. 1b ). The waveforms don't show any clear S wave arrival and they are featured by long coda (Fig. 1b). The VT-B events have time length between 15 and 40 s and local magnitude between -0.5 and 1.5. Their spectrograms shows a narrow frequency content (Fig. 1d). The time distribution of VT-B occurrence shows periods of moderate activity (some events a week) alternating with periods of intense activity (70 events a day). From Fig. 1f is also clear a time cyclic process and an upward trend in the VT-B activity. An increase in VT-B activity is often reported in some active volcanoes before significant eruptions. The observation of VT swarms on the Marsili volcano strongly suggest that it is still active. Further, it should not be ignored that potential volcanic eruptions could efficiently generate tsunami along the nearby coastlines.
    Description: Published
    Description: 213-214
    Description: 2.5. Laboratorio per lo sviluppo di sistemi di rilevamento sottomarini
    Description: JCR Journal
    Description: open
    Keywords: Marsili, seismo-volcanic activity, Ocean Bottom Seismometer, Hydrophone ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-30
    Description: Mafic phenocrysts from selected products of the last 4 ka volcanic activity at Mt. Vesuvius were investigated for their chemical and O-isotope composition, as a proxy for primary magmas feeding the system. 18O/16O ratios of studied Mg-rich olivines suggest that near-primary shoshonitic to tephritic melts experienced a flux of sedimentary carbonate-derived CO2, representing the early process of magma contamination in the roots of the volcanic structure. Bulk carbonate assimilation (physical digestion) mainly occurred in the shallow crust, strongly influencing magma chamber evolution. On a petrological and geochemical basis the effects of bulk sedimentary carbonate digestion on the chemical composition of the near-primary melts are resolved from those of carbonate-released CO2 fluxed into magma. An important outcome of this process lies in the effect of external CO2 in changing the overall volatile solubility of the magma, enhancing the ability of Vesuvius mafic magmas to rapidly rise and explosively erupt at the surface.
    Description: Published
    Description: 84-95
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei vulcani ed evoluzione dei magmi
    Description: JCR Journal
    Description: reserved
    Keywords: stable-isotope ; magma geochemistry ; CO2-degassing ; Vesuvius ; 04. Solid Earth::04.08. Volcanology::04.08.03. Magmas ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-10
    Description: Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Napoli Osservatorio Vesuviano
    Description: Published
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: open
    Keywords: Rete gravimetrica ; Schede monografiche ; Misure gravimetriche ; Pantelleria ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.03. Geodesy::04.03.05. Gravity variations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-06-15
    Description: We investigated the geochemical features of the fluids circulating over the Amik Basin (SE Turkey–Syria border), which is crossed by the Northern extension of theDSF (Dead Sea Fault) and represents the boundary area of three tectonic plates (Anatolian, Arabian and African plates). We collected 34 water samples (thermal and cold from natural springs and boreholes) as well as 8 gas samples (bubbling and gas seepage) besides the gases dissolved in the sampled waters. The results show that the dissolved gas phase is a mixture of shallow (atmospheric) and deep components either of mantle and crustal origin. Coherently the sampled waters are variable mixtures of shallow and deep ground waters, the latter being characterised by higher salinity and longer residence times. The deep groundwaters (fromboreholes deeper than 1000 m)have a CH4-dominated dissolved gas phase related to the presence of hydrocarbon reservoirs. The very unique tectonic setting of the area includes the presence of an ophiolitic block outcropping in the westernmost area on the African Plate, as well as basalts located to the North and East on the Arabic Plate. The diffuse presence of CO2-enriched gases, although diluted by the huge groundwater circulation, testifies a regional degassing activity. Fluids circulating over the ophiolitic block are marked by H2-dominated gases with abiogenic methane and high-pH waters. The measured 3He/4He isotopic ratios display contributions from both crustal and mantle-derived sources over both sides of the DSF. Although the serpentinization process is generally independent from mantle-type contribution, the recorded helium isotopic ratios highlight variable contents of mantle-derived fluids. Due to the absence of recent volcanism over the western side of the basin (African Plate), we argue that CO2-rich volatiles carrying mantle-type helium and enriched in heavy carbon, are degassed by deep-rooted regional faults rather than from volcanic sources.
    Description: Published
    Description: 23–39
    Description: 2T. Tettonica attiva
    Description: JCR Journal
    Description: restricted
    Keywords: Dead Sea Fault ; Hydrogeochemistry ; Gas geochemistry ; He isotopes ; C isotopes ; Ophiolites ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes ; 03. Hydrosphere::03.04. Chemical and biological::03.04.02. Carbon cycling ; 03. Hydrosphere::03.04. Chemical and biological::03.04.03. Chemistry of waters ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-06-15
    Description: The study area is close to the boundary of three tectonic plates (Anatolian, Arabian, and African plates) and is characterized by important tectonic lineaments, which consist mainly of the Dead Sea Fault (DSF), the Karasu Fault, and the East Anatolian Fault (EAF) systems. To understand the origin of soil gas emanation and its relationships with the tectonics of the Amik Basin (Hatay), a detailed soil gas sampling was systematically performed. Together with CO2 flux measurements, N220 soil gas samples were analyzed for Rn and CO2 concentrations. The distribution of soil Rn (kBq/m3), CO2 concentration (ppm), and CO2 flux (g/m2/day) in the area appears as a point source (spot) and/or diffuses (halo) anomalies along the buried faults/fractures due to crustal leaks. The results revealed that Rn and CO2 concentrations in the soil gas show anomalous values at the specific positions in the Amik Basin. The trace of these anomalous values is coincident with the N-S trending DSF. CO2 is believed to act as a carrier for Rn gas. Based on the Rn and CO2 concentrations of soil gases, at least three gas components are required to explain the observed variations. In addition to the atmospheric component, two other gas sources can be recognized. One is the deep crust component, which exhibits high Rn and CO2 concentrations, and is considered the best indicator for the surface location of fault/fracture zones in the region. The other component is a shallower gas source with high Rn concentration and low CO2 concentration. Moreover, He isotopic compositions of representative samples vary from 0.94 to 0.99 Ra, illustrating that most samples have a soil air component and may have mixed with some crustal component, without significant input of the mantle component. Based on the repeated measurements at a few sites, soil gas concentrations at the same site were observed to be higher in 2014 than in 2013, which may be associated with the activity of the DSF in 2013–2014. This suggests that soil gas variations at fault zone are closely related to the local crustal stress, and hence are suitable for monitoring fault activities.
    Description: Published
    Description: 129–146
    Description: 6T. Variazioni delle caratteristiche crostali e precursori
    Description: JCR Journal
    Keywords: Dead Sea Fault ; Karasu Fault ; Amik Basin ; Radon ; Carbon Dioxide ; 04.07. Tectonophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-12-15
    Description: We have analyzed a focal mechanism data set for Mount Vesuvius, consisting of 197 focal mechanisms of events recorded from 1999 to 2012. Using different approaches and a comparison between observations and numerical models, we have determined the spatial variations in the stress field beneath the volcano. The main results highlight the presence of two seismogenic volumes characterized by markedly different stress patterns. The two volumes are separated by a layer where the seismic strain release shows a significant decrease. Previous studies postulated the existence, at about the same depth, of a ductile layer allowing the spreading of the Mount Vesuvius edifice. We interpreted the difference in the stress pattern within the two volumes as the effect of a mechanical decoupling caused by the aforementioned ductile layer. The stress pattern in the top volume is dominated by a reverse faulting style, which agrees with the hypothesis of a seismicity driven by the spreading process. This agrees also with the persistent character of the seismicity located within this volume. Conversely, the stress field determined for the deep volume is consistent with a background regional field locally perturbed by the effects of the topography and of heterogeneities in the volcanic structure. Since the seismicity of the deep volume shows an intermittent behavior and has shown to be linked to geochemical variations in the fumaroles of the volcano, we hypothesize that it results from the effect of fluid injection episodes, possibly of magmatic origin, perturbing the pore pressure within the hydrothermal system.
    Description: Published
    Description: 1181–1199
    Description: 4T. Fisica dei terremoti e scenari cosismici
    Description: 2V. Dinamiche di unrest e scenari pre-eruttivi
    Description: 5V. Sorveglianza vulcanica ed emergenze
    Description: JCR Journal
    Description: restricted
    Keywords: vesuvius ; stress inversion ; focal mechanisms ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology ; 04. Solid Earth::04.06. Seismology::04.06.10. Instruments and techniques ; 04. Solid Earth::04.07. Tectonophysics::04.07.05. Stress ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-12-15
    Description: determined for evaluating its possible use as an isotopic tracer of the local groundwater recharge. These spot measures were compared with a longer series of local rain and spring compositions and with other samples taken, under different hydrogeological conditions, in caves of the Harz Mountains (Northern Germany). The slow flowing dripwater from Sicily showed d18O/dD ratios similar to those of local rain and groundwater, demonstrating that these three are all parent waters. A parallel similarity was found in the vertical isotopic gradient (Dd18O) of the three groups of water, accounting for their common meteoric origin. In the colder Harz Region, dripwater, spring water and rain have the same d18O/dD ratio but fast flowing dripwater, infiltrating through open cracks, is significantly enriched in lighter isotopes and representative of short residence time percolation. These results lead to the conclusion that dripwater, even if collected as spot samples, can be considered as a good isotopic marker of the average local groundwater recharge on the condition that only slow, diffused drips due to seepages are sampled.
    Description: Published
    Description: 231-239
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: restricted
    Keywords: Harz Mountains ; Isotopic composition ; Rain ; Groundwater ; Dripwater ; Sicily ; Rain ; 03. Hydrosphere::03.02. Hydrology::03.02.03. Groundwater processes
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-01-11
    Description: We present a comprehensive processing tool for the real-time analysis of the source mechanism of very long period (VLP) seismic data based on waveform inversions performed in the frequency domain for a point source. A search for the source providing the best-fitting solution is conducted over a three-dimensional grid of assumed source locations, in which the Green’s functions associated with each point source are calculated by finite differences using the reciprocal relation between source and receiver. Tests performed on 62 nodes of a Linux cluster indicate that the waveform inversion and search for the best-fitting signal over 100,000 point sources require roughly 30 s of processing time for a 2-min-long record. The procedure is applied to post-processing of a data archive and to continuous automatic inversion of real-time data at Stromboli, providing insights into different modes of degassing at this volcano
    Description: Published
    Description: L04301
    Description: reserved
    Keywords: NONE ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1736327 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-02-03
    Description: The 2006 eruption of Mt. Etna (Italy): new multidisciplinary approach implemented by the UFSO staff of INGV Catania Section S. Mangiagli, M. Neri, E. Pecora, D. Reitano, A. Amantia, E. Biale, M. D’Agostino, M. La Via and O. Torrisi Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Catania, P. Roma, 2 - 95125, Catania Italy (mangiagli@ct.ingv.it, reitano@ct.ingv.it) During the latest (2006) eruptive activity of Mount Etna (Sicily - Italy) multidisciplinary instrumental networks and observations produced useful and significant data in order to understand the eruptive dynamics of this volcano. In this context, the staff of the INGV Catania Section Department called Unità Funzionale Sala Operativa (UFSO) actively participates in national and European research projects dealing with the development and use of new systems with high technological content useful, in particular, during eruptions or seismic crises. Another aspect of this work is represented by the development of software for the supervisory and automatic control of the working systems. For example during the last few weeks of 2006, ash-rich columns several km in height, and consequent fallout characterized the eruption of Mt Etna and severely hampered the functioning of the nearby International Airport of Catania. Therefore, for a better evaluation of real time systems a new dedicated web site has been realized, improving the availability of fundamental data for the Italian Department of Civil Defence (DPC). The DPC staff, using also INGV scientific data, releases daily bulletins to Italian government authorities. Multidisciplinary data are collected and well represented in risk maps. Moreover, various algorithms have been implemented and used to make simulations of eruptive clouds from Mt. Etna. All realized maps also use wind forecasts at different altitude and different scenarios are available in a new software able to plot different parameters like, for example, temperature and wind speed/direction in different isobaric levels, precipitation rate and total cloud cover.
    Description: INGV, Sezione Catania
    Description: Published
    Description: Vienna, Austria
    Description: 1.5. TTC - Sorveglianza dell'attività eruttiva dei vulcani
    Description: 5.5. Attività di Sala Operativa
    Description: open
    Keywords: Mmultidisciplinary approach ; Etna 2006 ; 04. Solid Earth::04.08. Volcanology::04.08.06. Volcano monitoring ; 05. General::05.06. Methods::05.06.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Poster session
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...