ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2001-03-01
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-06-06
    Description: Using fluorescence spectrometry to map autofluorescence of chlorophyll (Chl) and tryptophan (Trp) versus depth in polar ice cores in the US National Ice Core Laboratory, we found that the Chl and Trp concentrations often showed an annual modulation of up to 25%, with peaks at depths corresponding to local summers. Using epifluorescence microscopy (EFM) and flow cytometry (FCM) triggered on 670 nm fluorescence (red) to study microbes from unstained melts of the polar ice, we inferred that picocyanobacteria may have been responsible for the red fluorescence in the cores. Micron-size bacteria in all ice melts from 2 Arctic and 6 Antarctic sites showed FCM patterns of scattering and of red vs. orange fluorescence (interpreted as due to Chl vs. phycoerythrin (PE)) that bore similarities to patterns of cultures of unstained picocyanobacteria Prochlorococcus and Synechococcus. Concentrations in ice from all sites were low but measurable at ~1 to ~103 cells cm−3. Calibrations showed that FCM patterns of mineral grains and volcanic ash could be distinguished from microbes with high efficiency by triggering on scattering instead of by red fluorescence. Average Chl and PE autofluorescence intensities showed no decrease per cell with time during up to 150 000 yr of storage in glacial ice. Taking into account the annual modulation of ~25% and seasonal changes of ocean temperatures and winds, we suggest that picocyanobacteria are wind-transported year-round from warmer ocean waters onto polar ice. Ice cores offer the opportunity to study evolution of marine microbes over ~300 million generations by analyzing their genomes vs. depth in glacial ice over the last 700 000 yr as frozen proxies for changes in their genomes in oceans.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-12-03
    Description: Using a spectrofluorimeter with 224-nm laser excitation to measure fluorescence intensity at 300-μm depth intervals, we report results of the first comparative study of concentrations of microbial cells (using the spectrum of protein-bound tryptophan (Trp) as a proxy) and of aerosols with an autofluorescence spectrum different from Trp as a function of depth in ice cores from west Antarctica (WAIS Divide and Siple Dome) and Greenland (GISP 2). The ratio of fluxes of microbial cells onto Antarctic Greenland ice is 0.23±0.11 and of non-Trp aerosols is 0.17±0.08, both of which are comparable to the ratio of fluxes of mineral dust at Antarctic and Greenland sites (0.09±0.06). In contrast, the ratio of fluxes of methanesulfonate (MSA) onto Antarctic relative to Greenland sites is 1.86±0.4, a factor 20 higher. The lower fluxes of microbes, non-Trp aerosols, and dust onto Antarctic ice may be due to the smaller areas of their source regions, together with less favorable wind patterns for Antarctic ice than Greenland ice. We attribute the higher fluxes of MSA in Antarctic ice to the concentration of haptophytes, a phylum of marine algae, in the far more extensive sea ice margin around Antarctica than around Greenland. The similarity of flux ratios of microbes and non-Trp aerosols to dust flux ratios suggests that their source regions overlap with dust sources rather than with MSA sources. A new version of the spectrofluorimeter with additional channels for mapping chlorophyll and volcanic tephra will be used to map WAIS Divide ice at 1 mm intervals to bedrock.
    Print ISSN: 1810-6277
    Electronic ISSN: 1810-6285
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-03-27
    Description: Using a spectrofluorimeter with 224-nm laser excitation and six emission bands from 300 to 420 nm to measure fluorescence intensities at 0.3-mm depth intervals in ice cores, we report results of the first comparative study of concentrations of microbial cells (using the spectrum of protein-bound tryptophan (Trp) as a proxy) and of aerosols with autofluorescence spectra different from Trp (denoted "non-Trp") as a function of depth in ice cores from West Antarctica (WAIS Divide and Siple Dome) and Greenland (GISP2). The ratio of fluxes of microbial cells onto West Antarctic (WAIS Divide) versus Greenland sites is 0.13±0.06; the ratio of non-Trp aerosols onto WAIS Divide versus Greenland sites is 0.16±0.08; and the ratio of non-sea-salt Ca2+ ions (a proxy for dust grains) onto WAIS Divide versus Greenland sites is 0.06±0.03. All of these are roughly comparable to the ratio of fluxes of dust onto Antarctic versus Greenland sites (0.08±0.05). By contrast to those values, which are considerably lower than unity, the ratio of fluxes of methanesulfonate (MSA) onto Antarctic versus Greenland sites is 1.9±0.4 and the ratio of sea-salt Na2+ ions onto WAIS Divide versus Greenland sites is 3.0±2. These ratios are more than an order of magnitude higher than those in the first grouping. We infer that the correlation of microbes and non-Trp aerosols with non-sea-salt Ca and dust suggests a largely terrestrial rather than marine origin. The lower fluxes of microbes, non-Trp aerosols, non-sea-salt Ca and dust onto WAIS Divide ice than onto Greenland ice may be due to the smaller areas of their source regions and less favorable wind patterns for transport onto Antarctic ice than onto Greenland ice. The correlated higher relative fluxes of MSA and marine Na onto Antarctic versus Greenland ice is consistent with the view that both originate largely on or around sea ice, with the Antarctic sea ice being far more extensive than that around Greenland.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-05
    Description: Using fluorescence spectrometry to map autofluorescence of chlorophyll (Chl) and tryptophan (Trp) versus depth in polar ice cores in the US National Ice Core Laboratory, we found that the Chl and Trp concentrations often showed an annual modulation of up to 25%, with peaks at depths corresponding to local summers. Using epifluorescence microscopy (EFM) and flow cytometry (FCM) triggered on red fluorescence at 670 nm to study microbes from unstained melts of the polar ice, we inferred that picocyanobacteria may have been responsible for the red fluorescence in the cores. Micron-size bacteria in all ice melts from Arctic and Antarctic sites showed FCM patterns of scattering and of red vs. orange fluorescence (interpreted as due to Chl vs. phycoerythrin (PE)) that bore similarities to patterns of cultures of unstained picocyanobacteria Prochlorococcus and Synechococcus. Concentrations in ice from all sites were low, but measurable at ~ 1 to ~ 103 cells cm−3. Calibrations showed that FCM patterns of mineral grains and volcanic ash could be distinguished from microbes with high efficiency by triggering on scattering instead of by red fluorescence. Average Chl and PE autofluorescence intensities showed no decrease per cell with time during up to 150 000 yr of storage in glacial ice. Taking into account the annual modulation of ~ 25% and seasonal changes of ocean temperatures and winds, we suggest that picocyanobacteria are wind-transported year-round from warmer ocean waters onto polar ice. Ice cores offer the opportunity to study evolution of marine microbes over ~ 300 million generations by analysing their genomes vs. depth in glacial ice over the last 700 000 yr as frozen proxies for changes in their genomes in oceans.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-10-31
    Electronic ISSN: 2045-2322
    Topics: Natural Sciences in General
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...