ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biochemistry and Biotechnology  (11)
  • Chemical Engineering  (6)
  • Wiley-Blackwell  (17)
  • Cell Press
  • Springer
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 321-333 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model has been developed to predict the coupled hydrodynamics and high-molecular-weight protein transport in mammalian-cell hollow-fiber bioreactors (HFBRs). The analysis applies to reactors with isotropic ultrafiltration membranes under startup conditions when the extracapillary space (ECS) is essentially unobstructed by cells. The model confirms the experimental finding that secondary ECS flows, engendered by the primary flow in the fiber lumens, can cause significant downstream polarization of ECS proteins at typical mammalian-cell HFBR operating conditions. It also reveals that the osmotic activity of the proteins, by curtailing transmembrane fluid fluxes, can influence strongly the outcome of the polarization process. In fact, at order-of-magnitude higher protein concentrations and/or lower recycle flow rates, the secondary flow velocities can be reduced by as much as six orders-of-magnitude throughout the ECS, thereby virtually eliminating the polarization problem. This result has important implications for improved reactor startup procedures.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 1727-1736 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The magnitude and direction of the ultrasonic radiation forces that act on individual particles in a standing-wave field were determined using a microscope-based imaging system. The forces are calculated from measured particle velocities assuming that the drag force, given by Stokes' law, is exactly counterbalanced by the imposed ultrasonic forces. The axial primary radiation force was found to vary sinusoidally with axial position and to be proportional to the local acoustic energy density, as predicted by theory. The magnitude of the transverse primary force was determined by two independent methods to be about 100-fold weaker than the axial force. Separation concepts exploiting the transverse force for cell retention have been successful despite the great disparity in magnitude between the axial and transvers-force components. This may be explained by the reduced hydrodynamic forces on aggregated particles in transverse flow due to their alignment in the sound field.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 33 (1989), S. 706-715 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An extensive in vivo study of the electrokinetic properties of six strains of the brewing yeast S. cerevisiae has been carried out. The yeasts were cultured under laboratory conditions. They were electrokinetically characterized by the electro-osmotic dipped cell technique, and data are presented as zeta-potentials. The effects of pH, fermentation time, successive fermentation cycles, and initial wort density have been established. The electrokinetic properties of an ale yeast which did not function correctly during commercial fermentation have also been examined. The results are discussed in the context of two controversial topics concerning the mechanism of yeast flocculation, the relative importance of yeast cell wall carboxyl and phosphate groups and the influence of wort components.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 46 (1995), S. 28-35 
    ISSN: 0006-3592
    Keywords: microfiltration ; membrane ; enzyme ; fouling ; atomic force microscopy ; photon correlation spectroscopy ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The transmission and rate of filtration of the enzyme yeast alcohol dehydrogenase (YADH) has been studied at capillary pore microfiltration membranes. Photon correlation spectroscopy (PCS) with nanometer resolution showed that the enzyme existed as discreate molecules only for a narrow range of pH and ionic strength. Under such conditions, the transmission of the enzyme was high. However, the rate of filtration still decreased continuously with time. Analyssis of the time dependence of the rate of filtration indicated that this decrease was due to in-pore enzyme deposition at low concentration (“standard blocking model”) and suface depositon at high concentration (“cake filtration model”). Use of atomic force microscopy (AFM) gave unequivocal and quantitative confirmation of these inferences. The work shows the great advantage of using advanced physical characterization techniques, both for the identification of the optimum conditions for filtration (PCS) and for the elucidation of mechanisms giving rise to inefficiencies in the filtration process (AFM). © 1995 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 41 (1995), S. 415-425 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A 1-D model, which neglects radial variations, describes the hydrodynamics of cell-free ultrafiltration hollow-fiber bioreactors (HFBRs) and the transport of highmolecular-weight proteins trapped in the extracapillary space (ECS). The profiles of radially-averaged protein concentrations predicted by this model are identical to those obtained using a model with radial variations. The model predictions agree well with axial profiles of bovine serum albumin (BSA) and human transferrin concentrations measured in transient and steady-state experiments. The validated model explores the influence of cell culture operating conditions on HFBR protein transport. Increasing protein loading decreases BSA and transferrin polarization in HFBRs operated with unidirectional lumen flow. A relationship developed predicts the protein loading needed to ensure a nonzero steady-state protein concentration throughout the ECS. This critical protein loading depends only on the lumen pressure drop and the ECS protein osmotic pressure. Periodic reversal of the lumen flow direction also decreases protein polarization. The influence of the flow-direction switching time and membrane permeability on the ECS protein distribution is investigated.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 42 (1993), S. 1099-1106 
    ISSN: 0006-3592
    Keywords: protein adsorption ; hollow fiber bioreactor ; transferrin ; serum-free medium ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The recovery of serum-free medium proteins from poly-sulfone hollow fiber bioreactors (HFBRs) was investigated. More than 99% of the initial transferrin was adsorbed to the hydrophobic hollow fibers within 2 h of HFBR operation. A methodology to minimize transferrin adsorption by pre-adsorption of bovine serum albumin (BSA) was developed. BSA adsorption on suspended cut fibers was virtually complete within 1 h. BSA-coated fibers adsorbed only 5% of the transferrin within 10 days, whereas uncoated cut fibers adsorbed more than 99% of the transferrin within 1 h. An improved HFBR startup procedure, using a BSA-coating step before inoculation, resulted in substantially higher transferrin recovery. Additional factors influenced extracapillary space (ECS) transferrin concentrations. Pronounced downstream polarization of transferrin was observed in the ECS. In addition, the 30-kDa nominal molecular weight cutoff ultrafiltration membranes rapidly leaked transferrin from the ECS to the lumen. © 1993 John Wiley & Sons, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 43 (1997), S. 959-970 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The application of electric fields can be a very effective means of removing deposits from membrane surfaces. Such a means of process improvement has usually been applied to cross-flow filtration, allowing efficient operation at low cross-flow velocities. In the limiting case of dead-end filtration (zero crossflow) it is possible to use electric-field pulses to release the filter cake for collection. Experimental data are presented for the dead-end ultrafiltration of silica colloids and the protein bovine serum albumin and for the dead-end microfiltration of titania dispersions taking as variables the magnitude of the applied field, the pulse interval, the pulse duration, and the feed conditions (pH, ionic strength, concentration). The data identify the conditions when pulsed electric fields can be used as an efficient means of releasing filter cakes for collection. A force balance model is developed to predict the filtration rate at the end of the release process, taking into account electrophoretic, electroosmotic, and hydrodynamic forces. The model shows excellent agreement with the experimental data for ultrafiltration and reasonable agreement with the experimental data for microfiltration. The use of pulsed electric fields to release filter cakes in dead-end membrane processes is a promising technique that is most likely to find application in the clarification of process feeds containing low dispersed solutes.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 491-497 
    ISSN: 0006-3592
    Keywords: membrane ; microfiltration ; enzyme ; activity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An experimental study of the interaction of the enzyme yeast alcohol dehydrogenase (YADH) with microfiltration membranes has been carried out. Most measurements were made with capillary pore inorganic membranes (Anopore) with some comparative measurements being made with polymeric membranes of low protein affinity (Durapore). It has been shown that the prolonged exposure of the enzyme to the inorganic membrane under low-shear conditions (slow recycle) resulted in a loss of enzyme activity. Under filtration conditions, the membrane permeation rate decreased continuously with time. This decrease could be quantified using the standard blocking filtration law, which describes a decrease in pore volume due to deposition of enzyme on the walls of the pore. No significant loss in activity of permeating enzyme occurred under solution conditions where the enzyme was stable. However, a significant loss of such activity occurred under solution conditions where the enzyme was slightly unstable. The experiments indicate that the likely mechanism for activity loss is a membrane/enzyme interaction resulting from a shear induced deformation of the enzyme structure. Two conclusions of practical importance are drawn from the work. © 1992 John Wiley & Sons, Inc.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 35 (1989), S. 1575-1582 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...