ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 40 (1994), S. 321-333 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A mathematical model has been developed to predict the coupled hydrodynamics and high-molecular-weight protein transport in mammalian-cell hollow-fiber bioreactors (HFBRs). The analysis applies to reactors with isotropic ultrafiltration membranes under startup conditions when the extracapillary space (ECS) is essentially unobstructed by cells. The model confirms the experimental finding that secondary ECS flows, engendered by the primary flow in the fiber lumens, can cause significant downstream polarization of ECS proteins at typical mammalian-cell HFBR operating conditions. It also reveals that the osmotic activity of the proteins, by curtailing transmembrane fluid fluxes, can influence strongly the outcome of the polarization process. In fact, at order-of-magnitude higher protein concentrations and/or lower recycle flow rates, the secondary flow velocities can be reduced by as much as six orders-of-magnitude throughout the ECS, thereby virtually eliminating the polarization problem. This result has important implications for improved reactor startup procedures.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...