ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu  (7)
  • National Academy of Sciences  (5)
  • Massachusetts Institute of Technology and Woods Hole Oceanographic Institution  (1)
Collection
Publisher
Years
  • 1
    Publication Date: 2017-03-15
    Description: The Southern Ocean regulates the ocean’s biological sequestration of CO2 and is widely suspected to underpin much of the ice age decline in atmospheric CO2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the 15N/14N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher 15N/14N across the Southern Ocean during the Last Glacial Maximum (LGM), 18–25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-10-01
    Description: Human alteration of the global nitrogen cycle intensified over the 1900s. Model simulations suggest that large swaths of the open ocean, including the North Atlantic and the western Pacific, have already been affected by anthropogenic nitrogen through atmospheric transport and deposition. Here we report an ∼130-year-long record of the 15N/14N of skeleton-bound organic matter in a coral from the outer reef of Bermuda, which provides a test of the hypothesis that anthropogenic atmospheric nitrogen has significantly augmented the nitrogen supply to the open North Atlantic surface ocean. The Bermuda 15N/14N record does not show a long-term decline in the Anthropocene of the amplitude predicted by model simulations or observed in a western Pacific coral 15N/14N record. Rather, the decadal variations in the Bermuda 15N/14N record appear to be driven by the North Atlantic Oscillation, most likely through changes in the formation rate of Subtropical Mode Water. Given that anthropogenic nitrogen emissions have been decreasing in North America since the 1990s, this study suggests that in the coming decades, the open North Atlantic will remain minimally affected by anthropogenic nitrogen deposition.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-01-06
    Description: Global models estimate that the anthropogenic component of atmospheric nitrogen (N) deposition to the ocean accounts for up to a third of the ocean’s external N supply and 10% of anthropogenic CO2 uptake. However, there are few observational constraints from the marine atmospheric environment to validate these findings. Due to the paucity of atmospheric organic N data, the largest uncertainties related to atmospheric N deposition are the sources and cycling of organic N, which is 20–80% of total N deposition. We studied the concentration and chemical composition of rainwater and aerosol organic N collected on the island of Bermuda in the western North Atlantic Ocean over 18 mo. Here, we show that the water-soluble organic N concentration ([WSON]) in marine aerosol is strongly correlated with surface ocean primary productivity and wind speed, suggesting a marine biogenic source for aerosol WSON. The chemical composition of high-[WSON] aerosols also indicates a primary marine source. We find that the WSON in marine rain is compositionally different from that in concurrently collected aerosols, suggesting that in-cloud scavenging (as opposed to below-cloud “washout”) is the main contributor to rain WSON. We conclude that anthropogenic activity is not a significant source of organic N to the marine atmosphere over the North Atlantic, despite downwind transport from large pollution sources in North America. This, in conjunction with previous work on ammonium and nitrate, leads to the conclusion that only 27% of total N deposition to the global ocean is anthropogenic, in contrast to the 80% estimated previously.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-31
    Description: The continental shelves are the most biologically dynamic regions of the ocean, and they are extensive worldwide, especially in the western North Pacific. Their area has varied dramatically over the glacial/interglacial cycles of the last million years, but the effects of this variation on ocean biological and chemical processes remain poorly understood. Conversion of nitrate to N2 by denitrification in sediments accounts for half or more of the removal of biologically available nitrogen (“fixed N”) from the ocean. The emergence of continental shelves during ice ages and their flooding during interglacials have been hypothesized to drive changes in sedimentary denitrification. Denitrification leads to the occurrence of phosphorus-bearing, N-depleted surface waters, which encourages N2 fixation, the dominant N input to the ocean. An 860,000-y record of foraminifera shell-bound N isotopes from the South China Sea indicates that N2 fixation covaried with sea level. The N2 fixation changes are best explained as a response to changes in regional excess phosphorus supply due to sea level-driven variations in shallow sediment denitrification associated with the cyclic drowning and emergence of the continental shelves. This hypothesis is consistent with a glacial ocean that hosted globally lower rates of fixed N input and loss and a longer residence time for oceanic fixed N—a “sluggish” ocean N budget during ice ages. In addition, this work provides a clear sign of sea level-driven glacial/interglacial oscillations in biogeochemical fluxes at and near the ocean margins, with implications for coastal organisms and ecosystems.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2014-03-17
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Massachusetts Institute of Technology and Woods Hole Oceanographic Institution
    Publication Date: 2022-05-25
    Description: Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 1997
    Description: This dissertation contributes to the search for a cause of glacial/interglacial variations in atmospheric carbon dioxide. The hypotheses addressed involve changes in low and high-latitude biological export production. A modelling exercise demonstrates that the paleoceanographic record of calcite preservation places constraints on hypothesized changes in low latitude biological production. The model results indicate that large, production-driven changes in the depth of the calcite saturation horizon during the last ice age would have caused a similar deepening of the calcite lysocline, even when the effect of sediment respiration-driven dissolution is considered. Such a large glacial lysocline deepening is not evident on an ocean-average basis. The results indicate very few mechanisms by which low latitude production could have driven Pleisotocene carbon dioxide variations, generally arguing against a low latitude cause for these variations. The use of N isotopes as a paleoceanographic proxy for nitrate utilization in Southern Ocean was investigated. In order to examine the generation of the link between nitrate utilization and N isotopes in the surface ocean, the isotopic composition of nitrate was studied. The first step in this work was the development of a new method to measure the isotopic composition of nitrate which is amenable to the generation of large, precise data sets. Results from the Southern Ocean demonstrate that the Antarctic and Subantarctic represent distinct regimes of N isotope dynamics. The findings support the use of N isotopes as a proxy for nitrate utilization in the Antarctic. A study of diatom microfossil-bound N in sediments suggests that this N is native to the diatoms, that it is invulnerable to early diagenesis, and that its isotopic compositon varies with that of the sinking flux. Paleoceanographic records of diatom-bound N isotopic composition corroborate the conclusion, previously based on bulk sediment isotopic data, that nitrate utilization was elevated in the glacial Antarctic, representing a major cause of lower glacial atmospheric carbon dioxide levels.
    Description: This research was supported by the National Science Foundation Graduate Fellowship Program, the JOI!USSAC Ocean Drilling Graduate Fellowship Program, and by NSF grant OCE-9201286 to D.C. McCorkle.
    Keywords: Nitrogen ; Isotopes ; Stable isotopes ; Paleoceanography ; Carbon dioxide ; Atmospheric carbon dioxide ; Polarstern (Ship) Cruise
    Repository Name: Woods Hole Open Access Server
    Type: Thesis
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-10-31
    Description: Dataset: Chlorophyll-a: EN532 and EN538
    Description: Chlorophyll-a concentrations from CTD cast deployments and underway seawater inflow from Endeavor 532 and Endeavor 538 cruises in 2013 (August and September) and 2014 (April and May). For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/651784
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1136345
    Keywords: Chlorophyll a ; CTD
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Southern Ocean particulate organic N isotopes
    Description: Compilation of surface measurements of bulk suspended particulate organic nitrogen (PON) collected from the Southern Ocean south of Africa (spanning 0-42°E). Date, time, latitude, and longitude are the averages of the start and end values of each underway collection. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/805324
    Description: NSF Division of Polar Programs (NSF PLR) PLR-1401489, NSF Division of Ocean Sciences (NSF OCE) OCE-1060947, NSF Division of Ocean Sciences (NSF OCE) OCE-0922345
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Dataset: GP12 Nitrate N and O Isotopes
    Description: Nitrate N and O isotopes from the GP12 ("PANDORA") cruise in the South-West Pacific and Solomon Sea from June to August 2012 carried out as part of the international GEOTRACES program. This dataset was supported by NSF OCE-1060947, NSF OCE-1736652, NSF OCE-0960802, and the Grand Challenges Program of Princeton University. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/838914
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-0960802, NSF Division of Ocean Sciences (NSF OCE) OCE-1060947, NSF Division of Ocean Sciences (NSF OCE) OCE-1736652
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-26
    Description: Dataset: Southern Ocean seawater N isotopes
    Description: Nitrate+nitrite and nitrate-only d15N from the Southern Ocean south of Africa. The dataset includes hydrocast (depth-profile) and underway (surface; intake at 7 m depth) data. The former is accompanied by hydrographic data obtained during the CTD cast. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/805546
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1060947
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...