ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Data on the discharge behavior, thermal loads, halo currents, and runaway electrons have been obtained in disruptions on the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 2A 441 (1985)]. These experiments have also evaluated techniques to mitigate the disruptions while minimizing runaway electron production. Experiments injecting cryogenic impurity "killer" pellets of neon and argon and massive amounts of helium gas have successfully reduced these disruption effects. The halo current generation, scaling, and mitigation are understood and are in good agreement with predictions of a semianalytic model. Results from "killer" pellet injection have been used to benchmark theoretical models of the pellet ablation and energy loss. Runaway electrons are often generated by the pellets and new runaway generation mechanisms, modifications of the standard Dreicer process, have been found to explain the runaways. Experiments with the massive helium gas puff have also effectively mitigated disruptions without the formation of runaway electrons that can occur with "killer" pellets. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Recent measurements of the two-dimensional (2-D) spatial profiles of divertor plasma density, temperature, and emissivity in the DIII-D tokamak [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] under highly radiating conditions are presented. Data are obtained using a divertor Thomson scattering system and other diagnostics optimized for measuring the high electron densities and low temperatures in these detached divertor plasmas (ne≤1021 m−3, 0.5 eV≤Te). D2 gas injection in the divertor increases the plasma radiation and lowers Te to less than 2 eV in most of the divertor volume. Modeling shows that this temperature is low enough to allow ion–neutral collisions, charge exchange, and volume recombination to play significant roles in reducing the plasma pressure along the magnetic separatrix by a factor of 3–5, consistent with the measurements. Absolutely calibrated vacuum ultraviolet spectroscopy and 2-D images of impurity emission show that carbon radiation near the X-point, and deuterium radiation near the target plates contribute to the reduction in Te. Uniformity of radiated power (Prad) (within a factor of 2) along the outer divertor leg, with peak heat flux on the divertor target reduced fourfold, was obtained. A comparison with 2-D fluid simulations shows good agreement when physical sputtering and an ad hoc chemical sputtering source (0.5%) from the private flux region surface are used. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: One mechanism for transport of energy and particles in a plasma is by discrete, intermittent, uncorrelated events, often called avalanches. This paper reports observations and quantitative characterization of avalanche events in a magnetically confined plasma. The observations are primarily of electron temperature fluctuations. Avalanches are identified by their large spatial scale, up to the system size, by self-similar behavior in the frequency spectrum and the autocorrelation function and by propagation. The two-point cross-correlation function allows determination of a characteristic velocity, which typically varies from several hundred meters per second in the outer part of the plasma to zero or even inward near the axis. This can be interpreted as resulting from the prevalence of negative avalanches (i.e., holes) near the axis. The presence of a long-tailed probability distribution is indicated by a Hurst parameter (H) in the range 0.80 to 0.95, which becomes smaller in the outer quarter of the plasma radius. Density fluctuation spectra from the plasma core also show self-similar behavior. Power transport estimates show that about half of the heat flux is carried by the avalanche events under conditions with no magnetohydrodynamic activity. These observations are qualitatively similar to results of modeling calculations based on drift wave turbulence. It is reasonable to infer that avalanches are the macroscopic manifestation of turbulence which inherently has a small spatial scale and, thus, allow a local, gyro-Bohm scaling process to show global Bohm-type behavior. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Intermittent plasma objects (IPOs) featuring higher pressure than the surrounding plasma, and responsible for ∼50% of the E×BT radial transport, are observed in the scrape off layer (SOL) and edge of the DIII-D tokamak [J. Watkins et al., Rev. Sci. Instrum. 63, 4728 (1992)]. Conditional averaging reveals that the IPOs, produced at a rate of ∼3×103 s−1, are positively charged and also polarized, featuring poloidal electric fields of up to 4000 V/m. The IPOs move poloidally at speeds of up to 5000 m/s and radially with E×BT/B2 velocities of ∼2600 m/s near the last closed flux surface (LCFS), and ∼330 m/s near the wall. The IPOs slow down as they shrink in radial size from 4 cm at the LCFS to 0.5 cm near the wall. The IPOs appear in the SOL of both L and H mode discharges and are responsible for nearly 50% of the SOL radial E×B transport at all radii; however, they are highly reduced in absolute amplitude in H-mode conditions. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The radiation of divertor heat flux on DIII-D [J. Luxon et al., in Proceedings of the 11th International Conference on Plasma Physics and Controlled Nuclear Fusion (International Atomic Energy Agency, Vienna, 1987), p. 159] is shown to greatly exceed the limits imposed by assumptions of energy transport dominated by electron thermal conduction parallel to the magnetic field. Approximately 90% of the power flowing into the divertor is dissipated through low-Z radiation and plasma recombination. The dissipation is made possible by an extended region of low electron temperature in the divertor. A one-dimensional analysis of the parallel heat flux finds that the electron temperature profile is incompatible with conduction-dominated parallel transport. Plasma flow at up to the ion acoustic speed, produced by upstream ionization, can account for the parallel heat flux. Modeling with the two-dimensional fluid code UEDGE [T. Rognlien, J. L. Milovich, M. E. Rensink, and G. D. Porter, J. Nucl. Mater. 196–198, 347 (1992)] has reproduced many of the observed experimental features. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 2 (1995), S. 3740-3756 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A formalism is developed that incorporates the anisotropic effects on the neutral atom and molecule transport of collisions with plasma ions flowing toward the divertor into Legendre representations of the scattering, charge-exchange, and recombination processes. These anisotropic directed flow effects and the anisotropic effects of neutral particles recycling from the divertor plate or streaming across low-density regions are incorporated into a differential transport formalism, which retains the computational advantages of an extended diffusion theory. The available collision and wall reflection data that are needed for implementation of the model for deuterium are reviewed, and recommended reaction rates and reflection coefficients are presented. Model problem calculations illustrate the importance of these anisotropic effects. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 33 (1992), S. 370-378 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: In this paper the so-called α degree of freedom appearing in thermal quantum field theory is discussed, using thermo field dynamics (TFD). This paper is confined to stationary thermal situations, both nonequilibrium and equilibrium. The main result is that when the stationary number distribution differs from the equilibrium one the use of time ordered and antitime ordered formalisms picks up α=1 and α=0, in contrast to the general belief that the Feynman diagram method is usable for any other α as well. This situation in TFD will be compared with the other approaches. The reason why the Feynman diagram method becomes available for any α in the case of the equilibrium distributions is also studied.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Plasmas 7 (2000), S. 4590-4599 
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Runaway electrons are calculated to be produced during the rapid plasma cooling resulting from "killer pellet" injection experiments, in general agreement with observations in the DIII-D [J. L. Luxon et al., Plasma Physics and Controlled Nuclear Fusion Research 1986 (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159] tokamak. The time-dependent dynamics of the kinetic runaway distributions are obtained with the CQL3D [R. W. Harvey and M. G. McCoy, "The CQL3D Code," in Proceedings of the IAEA Technical Committee Meeting on Numerical Modeling, Montreal, 1992 (International Atomic Energy Agency, Vienna, 1992), p. 489] collisional Fokker–Planck code, including the effect of small and large angle collisions and stochastic magnetic field transport losses. The background density, temperature, and Zeff are evolved according to the KPRAD [D. G. Whyte and T. E. Evans et al., in Proceedings of the 24th European Conference on Controlled Fusion and Plasma Physics, Berchtesgaden, Germany (European Physical Society, Petit-Lancy, 1997), Vol. 21A, p. 1137] deposition and radiation model of pellet–plasma interactions. Three distinct runway mechanisms are apparent: (1) prompt "hot-tail runaways" due to the residual hot electron tail remaining from the pre-cooling phase, (2) "knock-on" runaways produced by large-angle Coulomb collisions on existing high energy electrons, and (3) Dreicer "drizzle" runaway electrons due to diffusion of electrons up to the critical velocity for electron runaway. For electron densities below (approximate)1×1015 cm−3, the hot-tail runaways dominate the early time evolution, and provide the seed population for late time knock-on runaway avalanche. For small enough stochastic magnetic field transport losses, the knock-on production of electrons balances the losses at late times. For losses due to radial magnetic field perturbations in excess of (approximate)0.1% of the background field, i.e., δBr/B≥0.001, the losses prevent late-time electron runaway. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    Journal of Mathematical Physics 39 (1998), S. 5726-5738 
    ISSN: 1089-7658
    Source: AIP Digital Archive
    Topics: Mathematics , Physics
    Notes: We consider arbitrary splits of field operators into two parts; ψ=ψ++ψ−, and use the corresponding definition of normal ordering introduced earlier [T. S. Evans and D. A. Steer, Nucl. Phys. B 474, 481 (1996)]. In this case the normal ordered products and contractions have none of the special symmetry properties assumed in existing proofs of Wick's theorem. Despite this, we prove that Wick's theorem still holds in its usual form as long as the contraction is a c-number. Wick's theorem is thus shown to be much more general than existing derivations suggest, and we discuss possible simplifying applications of this result. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-17
    Description: Thin films of the lead-free ferroelectric Na 0.5 Bi 0.5 TiO 3 grown on thin-film Pt electrodes supported by SrTiO 3 substrates have a complex microstructure consisting of crystalline grains with three distinct major crystallographic orientations. The piezoelectric response measured in spatially separated sub-micron grains using time-resolved synchrotron x-ray microdiffraction is highly inhomogeneous even among grains sharing the same major orientation. The piezoelectric coefficient d 33 varies by nearly a factor of two in a series of areas sharing the 〈001〉 orientation. The piezoelectric inhomogeneity is linked to the peculiar microstructure of the film, arising from local variations in the stress imposed by surrounding grains with different crystallographic orientations and differing directions of the ferroelectric remnant polarization. A systematic nonlinearity of the piezoelectric strain is observed in applied electric fields with small magnitudes in all regions, consistent with the coexistence of domains of differing polarization direction at zero applied electric field.
    Print ISSN: 0003-6951
    Electronic ISSN: 1077-3118
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...