ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line, Tumor  (11)
  • Nature Publishing Group (NPG)  (11)
  • American Geophysical Union (AGU)
  • Oxford University Press
Collection
Publisher
Years
  • 1
    Publication Date: 2009-10-23
    Description: The tumour stroma is believed to contribute to some of the most malignant characteristics of epithelial tumours. However, signalling between stromal and tumour cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumours. This was associated with the massive remodelling of the extracellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumours ameliorated disruption of the tumour microenvironment and was sufficient to decrease tumour growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumour stroma of patients with breast cancer. These findings identify the Pten-Ets2 axis as a critical stroma-specific signalling pathway that suppresses mammary epithelial tumours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767301/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767301/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trimboli, Anthony J -- Cantemir-Stone, Carmen Z -- Li, Fu -- Wallace, Julie A -- Merchant, Anand -- Creasap, Nicholas -- Thompson, John C -- Caserta, Enrico -- Wang, Hui -- Chong, Jean-Leon -- Naidu, Shan -- Wei, Guo -- Sharma, Sudarshana M -- Stephens, Julie A -- Fernandez, Soledad A -- Gurcan, Metin N -- Weinstein, Michael B -- Barsky, Sanford H -- Yee, Lisa -- Rosol, Thomas J -- Stromberg, Paul C -- Robinson, Michael L -- Pepin, Francois -- Hallett, Michael -- Park, Morag -- Ostrowski, Michael C -- Leone, Gustavo -- P01 CA097189/CA/NCI NIH HHS/ -- P01 CA097189-050002/CA/NCI NIH HHS/ -- P01CA097189/CA/NCI NIH HHS/ -- R01 CA053271/CA/NCI NIH HHS/ -- R01 CA085619/CA/NCI NIH HHS/ -- R01 CA085619-05/CA/NCI NIH HHS/ -- R01 CA121275/CA/NCI NIH HHS/ -- R01 CA121275-02/CA/NCI NIH HHS/ -- R01 HD047470/HD/NICHD NIH HHS/ -- R01 HD047470-05/HD/NICHD NIH HHS/ -- R01CA053271/CA/NCI NIH HHS/ -- R01CA85619/CA/NCI NIH HHS/ -- R01HD47470/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Oct 22;461(7267):1084-91. doi: 10.1038/nature08486.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847259" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*metabolism/*pathology ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; Extracellular Matrix/metabolism ; Fibroblasts/*metabolism ; Gene Deletion ; Gene Expression Regulation, Neoplastic ; Humans ; Immunity, Innate ; Mammary Neoplasms, Experimental/metabolism/pathology ; Mice ; Mice, Transgenic ; Neoplasms, Glandular and Epithelial/*metabolism/*pathology ; PTEN Phosphohydrolase/deficiency/genetics/*metabolism ; Proto-Oncogene Protein c-ets-2/deficiency/metabolism ; Stromal Cells/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-08
    Description: Reactive oxygen species (ROS) are mutagenic and may thereby promote cancer. Normally, ROS levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors and is predominantly regulated by the transcription factor Nrf2 (also known as Nfe2l2) and its repressor protein Keap1 (refs 2-5). In contrast to the acute physiological regulation of Nrf2, in neoplasia there is evidence for increased basal activation of Nrf2. Indeed, somatic mutations that disrupt the Nrf2-Keap1 interaction to stabilize Nrf2 and increase the constitutive transcription of Nrf2 target genes were recently identified, indicating that enhanced ROS detoxification and additional Nrf2 functions may in fact be pro-tumorigenic. Here, we investigated ROS metabolism in primary murine cells following the expression of endogenous oncogenic alleles of Kras, Braf and Myc, and found that ROS are actively suppressed by these oncogenes. K-Ras(G12D), B-Raf(V619E) and Myc(ERT2) each increased the transcription of Nrf2 to stably elevate the basal Nrf2 antioxidant program and thereby lower intracellular ROS and confer a more reduced intracellular environment. Oncogene-directed increased expression of Nrf2 is a new mechanism for the activation of the Nrf2 antioxidant program, and is evident in primary cells and tissues of mice expressing K-Ras(G12D) and B-Raf(V619E), and in human pancreatic cancer. Furthermore, genetic targeting of the Nrf2 pathway impairs K-Ras(G12D)-induced proliferation and tumorigenesis in vivo. Thus, the Nrf2 antioxidant and cellular detoxification program represents a previously unappreciated mediator of oncogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeNicola, Gina M -- Karreth, Florian A -- Humpton, Timothy J -- Gopinathan, Aarthi -- Wei, Cong -- Frese, Kristopher -- Mangal, Dipti -- Yu, Kenneth H -- Yeo, Charles J -- Calhoun, Eric S -- Scrimieri, Francesca -- Winter, Jordan M -- Hruban, Ralph H -- Iacobuzio-Donahue, Christine -- Kern, Scott E -- Blair, Ian A -- Tuveson, David A -- CA084291/CA/NCI NIH HHS/ -- CA101973/CA/NCI NIH HHS/ -- CA105490/CA/NCI NIH HHS/ -- CA106610/CA/NCI NIH HHS/ -- CA111294/CA/NCI NIH HHS/ -- CA128920/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- R01 CA101973/CA/NCI NIH HHS/ -- R01 CA101973-05/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 Jul 6;475(7354):106-9. doi: 10.1038/nature10189.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21734707" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Alleles ; Animals ; Antioxidants/metabolism ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic/genetics/*metabolism/*pathology ; Cells, Cultured ; Cytoskeletal Proteins/genetics/metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Fibroblasts/metabolism ; Genes, myc/genetics ; Humans ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; JNK Mitogen-Activated Protein Kinases/metabolism ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase Kinases/metabolism ; NF-E2-Related Factor 2/deficiency/genetics/*metabolism ; NIH 3T3 Cells ; Oncogenes/*genetics ; Oxidation-Reduction ; Pancreatic Neoplasms/genetics/*metabolism/*pathology ; Proto-Oncogene Proteins B-raf/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Reactive Oxygen Species/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-09-26
    Description: In eukaryotic cells, post-translational histone modifications have an important role in gene regulation. Starting with early work on histone acetylation, a variety of residue-specific modifications have now been linked to RNA polymerase II (RNAP2) activity, but it remains unclear if these markers are active regulators of transcription or just passive byproducts. This is because studies have traditionally relied on fixed cell populations, meaning temporal resolution is limited to minutes at best, and correlated factors may not actually be present in the same cell at the same time. Complementary approaches are therefore needed to probe the dynamic interplay of histone modifications and RNAP2 with higher temporal resolution in single living cells. Here we address this problem by developing a system to track residue-specific histone modifications and RNAP2 phosphorylation in living cells by fluorescence microscopy. This increases temporal resolution to the tens-of-seconds range. Our single-cell analysis reveals histone H3 lysine-27 acetylation at a gene locus can alter downstream transcription kinetics by as much as 50%, affecting two temporally separate events. First acetylation enhances the search kinetics of transcriptional activators, and later the acetylation accelerates the transition of RNAP2 from initiation to elongation. Signatures of the latter can be found genome-wide using chromatin immunoprecipitation followed by sequencing. We argue that this regulation leads to a robust and potentially tunable transcriptional response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stasevich, Timothy J -- Hayashi-Takanaka, Yoko -- Sato, Yuko -- Maehara, Kazumitsu -- Ohkawa, Yasuyuki -- Sakata-Sogawa, Kumiko -- Tokunaga, Makio -- Nagase, Takahiro -- Nozaki, Naohito -- McNally, James G -- Kimura, Hiroshi -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 11;516(7530):272-5. doi: 10.1038/nature13714. Epub 2014 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA [3] Transcription Imaging Consortium, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [3] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [2] Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan [2] RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan. ; Department of Biotechnology Research, Kazusa DNA Research Institute, Chiba, 292-0818, Japan. ; Mab Institute Inc., Sapporo, 001-0021, Japan. ; 1] Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Berlin, 14109, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252976" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line, Tumor ; Cell Survival ; Chromatin Immunoprecipitation ; Enzyme Activation ; Genome/genetics ; Histones/*chemistry/*metabolism ; Kinetics ; Lysine/metabolism ; Mice ; Microscopy, Fluorescence ; Phosphorylation ; RNA Polymerase II/*metabolism ; *Single-Cell Analysis ; Time Factors ; Transcription Elongation, Genetic ; Transcription Initiation, Genetic ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-10-01
    Description: During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding. Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development, it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mouquet, Hugo -- Scheid, Johannes F -- Zoller, Markus J -- Krogsgaard, Michelle -- Ott, Rene G -- Shukair, Shetha -- Artyomov, Maxim N -- Pietzsch, John -- Connors, Mark -- Pereyra, Florencia -- Walker, Bruce D -- Ho, David D -- Wilson, Patrick C -- Seaman, Michael S -- Eisen, Herman N -- Chakraborty, Arup K -- Hope, Thomas J -- Ravetch, Jeffrey V -- Wardemann, Hedda -- Nussenzweig, Michel C -- 1 P01 AI081677/AI/NIAID NIH HHS/ -- P01 AI081677/AI/NIAID NIH HHS/ -- R01 AI047770/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 30;467(7315):591-5. doi: 10.1038/nature09385.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20882016" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/immunology ; Antibodies, Neutralizing/immunology ; Antibody Affinity/genetics/*immunology ; Antigen-Antibody Reactions/genetics/*immunology ; Cardiolipins/immunology ; Cell Line, Tumor ; Cross Reactions/genetics/immunology ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*chemistry/*immunology ; HIV Antibodies/genetics/*immunology ; HIV Antigens/chemistry/*immunology ; HIV-1/chemistry/*immunology ; Humans ; Immunoglobulin Fab Fragments/genetics/immunology ; Immunoglobulin Heavy Chains/genetics/immunology ; Mutation ; Surface Plasmon Resonance ; env Gene Products, Human Immunodeficiency Virus/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-04-16
    Description: The four receptors of the Notch family are widely expressed transmembrane proteins that function as key conduits through which mammalian cells communicate to regulate cell fate and growth. Ligand binding triggers a conformational change in the receptor negative regulatory region (NRR) that enables ADAM protease cleavage at a juxtamembrane site that otherwise lies buried within the quiescent NRR. Subsequent intramembrane proteolysis catalysed by the gamma-secretase complex liberates the intracellular domain (ICD) to initiate the downstream Notch transcriptional program. Aberrant signalling through each receptor has been linked to numerous diseases, particularly cancer, making the Notch pathway a compelling target for new drugs. Although gamma-secretase inhibitors (GSIs) have progressed into the clinic, GSIs fail to distinguish individual Notch receptors, inhibit other signalling pathways and cause intestinal toxicity, attributed to dual inhibition of Notch1 and 2 (ref. 11). To elucidate the discrete functions of Notch1 and Notch2 and develop clinically relevant inhibitors that reduce intestinal toxicity, we used phage display technology to generate highly specialized antibodies that specifically antagonize each receptor paralogue and yet cross-react with the human and mouse sequences, enabling the discrimination of Notch1 versus Notch2 function in human patients and rodent models. Our co-crystal structure shows that the inhibitory mechanism relies on stabilizing NRR quiescence. Selective blocking of Notch1 inhibits tumour growth in pre-clinical models through two mechanisms: inhibition of cancer cell growth and deregulation of angiogenesis. Whereas inhibition of Notch1 plus Notch2 causes severe intestinal toxicity, inhibition of either receptor alone reduces or avoids this effect, demonstrating a clear advantage over pan-Notch inhibitors. Our studies emphasize the value of paralogue-specific antagonists in dissecting the contributions of distinct Notch receptors to differentiation and disease and reveal the therapeutic promise in targeting Notch1 and Notch2 independently.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Yan -- Cain-Hom, Carol -- Choy, Lisa -- Hagenbeek, Thijs J -- de Leon, Gladys P -- Chen, Yongmei -- Finkle, David -- Venook, Rayna -- Wu, Xiumin -- Ridgway, John -- Schahin-Reed, Dorreyah -- Dow, Graham J -- Shelton, Amy -- Stawicki, Scott -- Watts, Ryan J -- Zhang, Jeff -- Choy, Robert -- Howard, Peter -- Kadyk, Lisa -- Yan, Minhong -- Zha, Jiping -- Callahan, Christopher A -- Hymowitz, Sarah G -- Siebel, Christian W -- England -- Nature. 2010 Apr 15;464(7291):1052-7. doi: 10.1038/nature08878.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20393564" target="_blank"〉PubMed〈/a〉
    Keywords: Angiogenesis Inhibitors/immunology/pharmacology/therapeutic use ; Animals ; Antibodies/adverse effects/immunology/*pharmacology/*therapeutic use ; Antibody Specificity/immunology ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Goblet Cells/drug effects/pathology ; Humans ; Mice ; Mice, Inbred BALB C ; NIH 3T3 Cells ; Neoplasms/blood supply/*drug therapy/*metabolism/pathology ; Neovascularization, Pathologic/drug therapy ; Peptide Library ; Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/drug ; therapy/metabolism/pathology ; Receptor, Notch1/antagonists & inhibitors/immunology ; Receptor, Notch2/antagonists & inhibitors/immunology ; Receptors, Notch/*antagonists & inhibitors/genetics/immunology/metabolism ; Signal Transduction/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-02-26
    Description: Integrated genomic analysis of 456 pancreatic ductal adenocarcinomas identified 32 recurrently mutated genes that aggregate into 10 pathways: KRAS, TGF-beta, WNT, NOTCH, ROBO/SLIT signalling, G1/S transition, SWI-SNF, chromatin modification, DNA repair and RNA processing. Expression analysis defined 4 subtypes: (1) squamous; (2) pancreatic progenitor; (3) immunogenic; and (4) aberrantly differentiated endocrine exocrine (ADEX) that correlate with histopathological characteristics. Squamous tumours are enriched for TP53 and KDM6A mutations, upregulation of the TP63N transcriptional network, hypermethylation of pancreatic endodermal cell-fate determining genes and have a poor prognosis. Pancreatic progenitor tumours preferentially express genes involved in early pancreatic development (FOXA2/3, PDX1 and MNX1). ADEX tumours displayed upregulation of genes that regulate networks involved in KRAS activation, exocrine (NR5A2 and RBPJL), and endocrine differentiation (NEUROD1 and NKX2-2). Immunogenic tumours contained upregulated immune networks including pathways involved in acquired immune suppression. These data infer differences in the molecular evolution of pancreatic cancer subtypes and identify opportunities for therapeutic development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bailey, Peter -- Chang, David K -- Nones, Katia -- Johns, Amber L -- Patch, Ann-Marie -- Gingras, Marie-Claude -- Miller, David K -- Christ, Angelika N -- Bruxner, Tim J C -- Quinn, Michael C -- Nourse, Craig -- Murtaugh, L Charles -- Harliwong, Ivon -- Idrisoglu, Senel -- Manning, Suzanne -- Nourbakhsh, Ehsan -- Wani, Shivangi -- Fink, Lynn -- Holmes, Oliver -- Chin, Venessa -- Anderson, Matthew J -- Kazakoff, Stephen -- Leonard, Conrad -- Newell, Felicity -- Waddell, Nick -- Wood, Scott -- Xu, Qinying -- Wilson, Peter J -- Cloonan, Nicole -- Kassahn, Karin S -- Taylor, Darrin -- Quek, Kelly -- Robertson, Alan -- Pantano, Lorena -- Mincarelli, Laura -- Sanchez, Luis N -- Evers, Lisa -- Wu, Jianmin -- Pinese, Mark -- Cowley, Mark J -- Jones, Marc D -- Colvin, Emily K -- Nagrial, Adnan M -- Humphrey, Emily S -- Chantrill, Lorraine A -- Mawson, Amanda -- Humphris, Jeremy -- Chou, Angela -- Pajic, Marina -- Scarlett, Christopher J -- Pinho, Andreia V -- Giry-Laterriere, Marc -- Rooman, Ilse -- Samra, Jaswinder S -- Kench, James G -- Lovell, Jessica A -- Merrett, Neil D -- Toon, Christopher W -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Moran-Jones, Kim -- Jamieson, Nigel B -- Graham, Janet S -- Duthie, Fraser -- Oien, Karin -- Hair, Jane -- Grutzmann, Robert -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Corbo, Vincenzo -- Bassi, Claudio -- Rusev, Borislav -- Capelli, Paola -- Salvia, Roberto -- Tortora, Giampaolo -- Mukhopadhyay, Debabrata -- Petersen, Gloria M -- Australian Pancreatic Cancer Genome Initiative -- Munzy, Donna M -- Fisher, William E -- Karim, Saadia A -- Eshleman, James R -- Hruban, Ralph H -- Pilarsky, Christian -- Morton, Jennifer P -- Sansom, Owen J -- Scarpa, Aldo -- Musgrove, Elizabeth A -- Bailey, Ulla-Maja Hagbo -- Hofmann, Oliver -- Sutherland, Robert L -- Wheeler, David A -- Gill, Anthony J -- Gibbs, Richard A -- Pearson, John V -- Waddell, Nicola -- Biankin, Andrew V -- Grimmond, Sean M -- 103721/Z/14/Z/Wellcome Trust/United Kingdom -- A12481/Cancer Research UK/United Kingdom -- A18076/Cancer Research UK/United Kingdom -- C29717/A17263/Cancer Research UK/United Kingdom -- England -- Nature. 2016 Mar 3;531(7592):47-52. doi: 10.1038/nature16965. Epub 2016 Feb 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Queensland Centre for Medical Genomics, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia. ; Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK. ; The Kinghorn Cancer Centre, 370 Victoria St, Darlinghurst, and the Cancer Research Program, Garvan Institute of Medical Research, 384 Victoria St, Darlinghurst, Sydney, New South Wales 2010, Australia. ; Department of Surgery, Bankstown Hospital, Eldridge Road, Bankstown, Sydney, New South Wales 2200, Australia. ; South Western Sydney Clinical School, Faculty of Medicine, University of New South Wales, Liverpool, New South Wales 2170, Australia. ; QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia. ; Department of Molecular and Human Genetics, Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Michael DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA. ; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA. ; Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA. ; Genetic and Molecular Pathology, SA Pathology, Adelaide, South Australia 5000, Australia. ; School of Biological Sciences, The University of Adelaide, Adelaide, South Australia 5000, Australia. ; Harvard Chan Bioinformatics Core, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. ; Macarthur Cancer Therapy Centre, Campbelltown Hospital, New South Wales 2560, Australia. ; Department of Pathology. SydPath, St Vincent's Hospital, Sydney, NSW 2010, Australia. ; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, New South Wales 2052, Australia. ; School of Environmental &Life Sciences, University of Newcastle, Ourimbah, New South Wales 2258, Australia. ; Department of Surgery, Royal North Shore Hospital, St Leonards, Sydney, New South Wales 2065, Australia. ; University of Sydney, Sydney, New South Wales 2006, Australia. ; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown New South Wales 2050, Australia. ; School of Medicine, University of Western Sydney, Penrith, New South Wales 2175, Australia. ; Fiona Stanley Hospital, Robin Warren Drive, Murdoch, Western Australia 6150, Australia. ; Department of Gastroenterology, Royal Adelaide Hospital, North Terrace, Adelaide, South Australia 5000, Australia. ; Department of Surgery, Princess Alexandra Hospital, Ipswich Rd, Woollongabba, Queensland 4102, Australia. ; School of Surgery M507, University of Western Australia, 35 Stirling Hwy, Nedlands 6009, Australia and St John of God Pathology, 12 Salvado Rd, Subiaco, Western Australia 6008, Australia. ; Academic Unit of Surgery, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 OSF, UK. ; West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow G31 2ER, UK. ; Department of Medical Oncology, Beatson West of Scotland Cancer Centre, 1053 Great Western Road, Glasgow G12 0YN, UK. ; Department of Pathology, Southern General Hospital, Greater Glasgow &Clyde NHS, Glasgow G51 4TF, UK. ; GGC Bio-repository, Pathology Department, Southern General Hospital, 1345 Govan Road, Glasgow G51 4TY, UK. ; Department of Surgery, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. ; Departments of Pathology and Translational Molecular Pathology, UT MD Anderson Cancer Center, Houston Texas 77030, USA. ; The David M. Rubenstein Pancreatic Cancer Research Center and Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA. ; Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, USA. ; ARC-Net Applied Research on Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Pathology and Diagnostics, University of Verona, Verona 37134, Italy. ; Department of Surgery, Pancreas Institute, University and Hospital Trust of Verona, Verona 37134, Italy. ; Department of Medical Oncology, Comprehensive Cancer Centre, University and Hospital Trust of Verona, Verona 37134, Italy. ; Mayo Clinic, Rochester, Minnesota 55905, USA. ; Elkins Pancreas Center, Baylor College of Medicine, One Baylor Plaza, MS226, Houston, Texas 77030-3411, USA. ; Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. ; Institute for Cancer Science, University of Glasgow, Glasgow G12 8QQ, UK. ; University of Melbourne, Parkville, Victoria 3010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26909576" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Basic Helix-Loop-Helix Transcription Factors/genetics ; Carcinoma, Pancreatic ; Ductal/classification/genetics/immunology/metabolism/pathology ; Cell Line, Tumor ; DNA Methylation ; DNA-Binding Proteins/genetics ; Gene Expression Regulation, Neoplastic ; Gene Regulatory Networks ; Genes, Neoplasm/*genetics ; Genome, Human/*genetics ; *Genomics ; Hepatocyte Nuclear Factor 3-beta/genetics ; Hepatocyte Nuclear Factor 3-gamma/genetics ; Histone Demethylases/genetics ; Homeodomain Proteins/genetics ; Humans ; Mice ; Mutation/*genetics ; Nuclear Proteins/genetics ; Pancreatic Neoplasms/*classification/*genetics/immunology/metabolism/pathology ; Prognosis ; Receptors, Cytoplasmic and Nuclear/genetics ; Survival Analysis ; Trans-Activators/genetics ; Transcription Factors/genetics ; Transcription, Genetic ; Transcriptome ; Tumor Suppressor Protein p53/genetics ; Tumor Suppressor Proteins/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2009-02-17
    Description: Altered glucose metabolism in cancer cells is termed the Warburg effect, which describes the propensity of most cancer cells to take up glucose avidly and convert it primarily to lactate, despite available oxygen. Notwithstanding the renewed interest in the Warburg effect, cancer cells also depend on continued mitochondrial function for metabolism, specifically glutaminolysis that catabolizes glutamine to generate ATP and lactate. Glutamine, which is highly transported into proliferating cells, is a major source of energy and nitrogen for biosynthesis, and a carbon substrate for anabolic processes in cancer cells, but the regulation of glutamine metabolism is not well understood. Here we report that the c-Myc (hereafter referred to as Myc) oncogenic transcription factor, which is known to regulate microRNAs and stimulate cell proliferation, transcriptionally represses miR-23a and miR-23b, resulting in greater expression of their target protein, mitochondrial glutaminase, in human P-493 B lymphoma cells and PC3 prostate cancer cells. This leads to upregulation of glutamine catabolism. Glutaminase converts glutamine to glutamate, which is further catabolized through the tricarboxylic acid cycle for the production of ATP or serves as substrate for glutathione synthesis. The unique means by which Myc regulates glutaminase uncovers a previously unsuspected link between Myc regulation of miRNAs, glutamine metabolism, and energy and reactive oxygen species homeostasis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729443/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2729443/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gao, Ping -- Tchernyshyov, Irina -- Chang, Tsung-Cheng -- Lee, Yun-Sil -- Kita, Kayoko -- Ochi, Takafumi -- Zeller, Karen I -- De Marzo, Angelo M -- Van Eyk, Jennifer E -- Mendell, Joshua T -- Dang, Chi V -- N01-HV-28180/HV/NHLBI NIH HHS/ -- P50CA58236/CA/NCI NIH HHS/ -- R01 CA057341/CA/NCI NIH HHS/ -- R01 CA057341-17/CA/NCI NIH HHS/ -- R01 CA120185/CA/NCI NIH HHS/ -- R01 CA120185-01A2/CA/NCI NIH HHS/ -- R01 CA120185-02/CA/NCI NIH HHS/ -- R01 CA120185-03/CA/NCI NIH HHS/ -- R01 HL085434/HL/NHLBI NIH HHS/ -- R01 HL085434-01A2/HL/NHLBI NIH HHS/ -- R01CA051497/CA/NCI NIH HHS/ -- R01CA120185/CA/NCI NIH HHS/ -- R01CA57341/CA/NCI NIH HHS/ -- R37 CA051497/CA/NCI NIH HHS/ -- R37 CA051497-17/CA/NCI NIH HHS/ -- England -- Nature. 2009 Apr 9;458(7239):762-5. doi: 10.1038/nature07823. Epub 2009 Feb 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Hematology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA. pgao2@jhmi.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19219026" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions/metabolism ; Cell Line, Tumor ; *Gene Expression Regulation, Enzymologic ; Glutaminase/*metabolism ; Glutamine/*metabolism ; Humans ; MicroRNAs/*metabolism ; Mitochondria/*enzymology ; Proto-Oncogene Proteins c-myc/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-02-13
    Description: Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724746/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724746/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sreekumar, Arun -- Poisson, Laila M -- Rajendiran, Thekkelnaycke M -- Khan, Amjad P -- Cao, Qi -- Yu, Jindan -- Laxman, Bharathi -- Mehra, Rohit -- Lonigro, Robert J -- Li, Yong -- Nyati, Mukesh K -- Ahsan, Aarif -- Kalyana-Sundaram, Shanker -- Han, Bo -- Cao, Xuhong -- Byun, Jaeman -- Omenn, Gilbert S -- Ghosh, Debashis -- Pennathur, Subramaniam -- Alexander, Danny C -- Berger, Alvin -- Shuster, Jeffrey R -- Wei, John T -- Varambally, Sooryanarayana -- Beecher, Christopher -- Chinnaiyan, Arul M -- K99 CA129565/CA/NCI NIH HHS/ -- K99 CA129565-01A1/CA/NCI NIH HHS/ -- R01 CA133458/CA/NCI NIH HHS/ -- U01 CA111275/CA/NCI NIH HHS/ -- U01 CA111275-04/CA/NCI NIH HHS/ -- England -- Nature. 2009 Feb 12;457(7231):910-4. doi: 10.1038/nature07762.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Michigan Center for Translational Pathology, Ann Arbor, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19212411" target="_blank"〉PubMed〈/a〉
    Keywords: Androgens/physiology ; Cell Line ; Cell Line, Tumor ; *Disease Progression ; Gene Knockdown Techniques ; Glycine N-Methyltransferase/genetics/metabolism ; Humans ; Male ; *Metabolomics ; Prostatic Neoplasms/enzymology/genetics/*metabolism ; Sarcosine/analysis/*metabolism/urine ; Sarcosine Dehydrogenase/metabolism ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2009-12-25
    Description: Multiple somatic rearrangements are often found in cancer genomes; however, the underlying processes of rearrangement and their contribution to cancer development are poorly characterized. Here we use a paired-end sequencing strategy to identify somatic rearrangements in breast cancer genomes. There are more rearrangements in some breast cancers than previously appreciated. Rearrangements are more frequent over gene footprints and most are intrachromosomal. Multiple rearrangement architectures are present, but tandem duplications are particularly common in some cancers, perhaps reflecting a specific defect in DNA maintenance. Short overlapping sequences at most rearrangement junctions indicate that these have been mediated by non-homologous end-joining DNA repair, although varying sequence patterns indicate that multiple processes of this type are operative. Several expressed in-frame fusion genes were identified but none was recurrent. The study provides a new perspective on cancer genomes, highlighting the diversity of somatic rearrangements and their potential contribution to cancer development.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398135/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3398135/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, Philip J -- McBride, David J -- Lin, Meng-Lay -- Varela, Ignacio -- Pleasance, Erin D -- Simpson, Jared T -- Stebbings, Lucy A -- Leroy, Catherine -- Edkins, Sarah -- Mudie, Laura J -- Greenman, Chris D -- Jia, Mingming -- Latimer, Calli -- Teague, Jon W -- Lau, King Wai -- Burton, John -- Quail, Michael A -- Swerdlow, Harold -- Churcher, Carol -- Natrajan, Rachael -- Sieuwerts, Anieta M -- Martens, John W M -- Silver, Daniel P -- Langerod, Anita -- Russnes, Hege E G -- Foekens, John A -- Reis-Filho, Jorge S -- van 't Veer, Laura -- Richardson, Andrea L -- Borresen-Dale, Anne-Lise -- Campbell, Peter J -- Futreal, P Andrew -- Stratton, Michael R -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- CA089393/CA/NCI NIH HHS/ -- England -- Nature. 2009 Dec 24;462(7276):1005-10. doi: 10.1038/nature08645.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20033038" target="_blank"〉PubMed〈/a〉
    Keywords: Breast Neoplasms/*genetics ; Cell Line, Tumor ; Cells, Cultured ; *Chromosome Aberrations ; DNA Breaks ; Female ; Gene Rearrangement/*genetics ; Genome, Human/*genetics ; Genomic Library ; Humans ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-07-22
    Description: Bone-resorbing osteoclasts significantly contribute to osteoporosis and bone metastases of cancer. MicroRNAs play important roles in physiology and disease, and present tremendous therapeutic potential. Nonetheless, how microRNAs regulate skeletal biology is underexplored. Here we identify miR-34a as a novel and critical suppressor of osteoclastogenesis, bone resorption and the bone metastatic niche. miR-34a is downregulated during osteoclast differentiation. Osteoclastic miR-34a-overexpressing transgenic mice exhibit lower bone resorption and higher bone mass. Conversely, miR-34a knockout and heterozygous mice exhibit elevated bone resorption and reduced bone mass. Consequently, ovariectomy-induced osteoporosis, as well as bone metastasis of breast and skin cancers, are diminished in osteoclastic miR-34a transgenic mice, and can be effectively attenuated by miR-34a nanoparticle treatment. Mechanistically, we identify transforming growth factor-beta-induced factor 2 (Tgif2) as an essential direct miR-34a target that is pro-osteoclastogenic. Tgif2 deletion reduces bone resorption and abolishes miR-34a regulation. Together, using mouse genetic, pharmacological and disease models, we reveal miR-34a as a key osteoclast suppressor and a potential therapeutic strategy to confer skeletal protection and ameliorate bone metastasis of cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149606/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149606/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Krzeszinski, Jing Y -- Wei, Wei -- Huynh, HoangDinh -- Jin, Zixue -- Wang, Xunde -- Chang, Tsung-Cheng -- Xie, Xian-Jin -- He, Lin -- Mangala, Lingegowda S -- Lopez-Berestein, Gabriel -- Sood, Anil K -- Mendell, Joshua T -- Wan, Yihong -- 1P30 CA142543/CA/NCI NIH HHS/ -- 1S10RR02564801/RR/NCRR NIH HHS/ -- P01 CA134292/CA/NCI NIH HHS/ -- P30 CA142543/CA/NCI NIH HHS/ -- R01 CA120185/CA/NCI NIH HHS/ -- R01 CA139067/CA/NCI NIH HHS/ -- R01 DK089113/DK/NIDDK NIH HHS/ -- S10 RR024757/RR/NCRR NIH HHS/ -- S10 RR025648/RR/NCRR NIH HHS/ -- U54 CA151668/CA/NCI NIH HHS/ -- UH2 TR000943/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Aug 28;512(7515):431-5. doi: 10.1038/nature13375. Epub 2014 Jun 25.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Department of Clinical Sciences, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California 94705, USA. ; 1] Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [2] Center for RNA Interference and Non-coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA [3] Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA. ; 1] Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA. ; 1] Department of Pharmacology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA [2] Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25043055" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Bone Neoplasms/genetics/pathology/*prevention & control/*secondary ; Bone Resorption/drug therapy/genetics ; Cell Differentiation/drug effects/*genetics ; Cell Line, Tumor ; Disease Models, Animal ; Female ; Gene Deletion ; Homeodomain Proteins/antagonists & inhibitors/genetics/metabolism ; Humans ; Male ; Mammary Neoplasms, Animal/pathology ; Mice ; Mice, Transgenic ; MicroRNAs/*genetics/pharmacology/therapeutic use ; Neoplasm Transplantation ; Organ Size/drug effects ; Osteoclasts/drug effects/*pathology ; Osteoporosis/genetics/pathology/*prevention & control ; Ovariectomy ; Repressor Proteins/antagonists & inhibitors/*deficiency/genetics/metabolism ; Skin Neoplasms/pathology ; Transgenes ; Xenograft Model Antitumor Assays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...