ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Signal Transduction  (14)
  • Cell Line, Tumor  (11)
  • Nature Publishing Group (NPG)  (24)
  • American Geophysical Union (AGU)
  • American Institute of Physics
  • American Institute of Physics (AIP)
  • National Academy of Sciences
Collection
Publisher
Years
  • 1
    Publication Date: 2009-10-23
    Description: The tumour stroma is believed to contribute to some of the most malignant characteristics of epithelial tumours. However, signalling between stromal and tumour cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumours. This was associated with the massive remodelling of the extracellular matrix (ECM), innate immune cell infiltration and increased angiogenesis. Loss of Pten in stromal fibroblasts led to increased expression, phosphorylation (T72) and recruitment of Ets2 to target promoters known to be involved in these processes. Remarkably, Ets2 inactivation in Pten stroma-deleted tumours ameliorated disruption of the tumour microenvironment and was sufficient to decrease tumour growth and progression. Global gene expression profiling of mammary stromal cells identified a Pten-specific signature that was highly represented in the tumour stroma of patients with breast cancer. These findings identify the Pten-Ets2 axis as a critical stroma-specific signalling pathway that suppresses mammary epithelial tumours.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767301/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767301/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Trimboli, Anthony J -- Cantemir-Stone, Carmen Z -- Li, Fu -- Wallace, Julie A -- Merchant, Anand -- Creasap, Nicholas -- Thompson, John C -- Caserta, Enrico -- Wang, Hui -- Chong, Jean-Leon -- Naidu, Shan -- Wei, Guo -- Sharma, Sudarshana M -- Stephens, Julie A -- Fernandez, Soledad A -- Gurcan, Metin N -- Weinstein, Michael B -- Barsky, Sanford H -- Yee, Lisa -- Rosol, Thomas J -- Stromberg, Paul C -- Robinson, Michael L -- Pepin, Francois -- Hallett, Michael -- Park, Morag -- Ostrowski, Michael C -- Leone, Gustavo -- P01 CA097189/CA/NCI NIH HHS/ -- P01 CA097189-050002/CA/NCI NIH HHS/ -- P01CA097189/CA/NCI NIH HHS/ -- R01 CA053271/CA/NCI NIH HHS/ -- R01 CA085619/CA/NCI NIH HHS/ -- R01 CA085619-05/CA/NCI NIH HHS/ -- R01 CA121275/CA/NCI NIH HHS/ -- R01 CA121275-02/CA/NCI NIH HHS/ -- R01 HD047470/HD/NICHD NIH HHS/ -- R01 HD047470-05/HD/NICHD NIH HHS/ -- R01CA053271/CA/NCI NIH HHS/ -- R01CA85619/CA/NCI NIH HHS/ -- R01HD47470/HD/NICHD NIH HHS/ -- England -- Nature. 2009 Oct 22;461(7267):1084-91. doi: 10.1038/nature08486.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Genetics, College of Biological Sciences, The Ohio State University, Columbus, Ohio 43210, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847259" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Breast Neoplasms/*metabolism/*pathology ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic ; Extracellular Matrix/metabolism ; Fibroblasts/*metabolism ; Gene Deletion ; Gene Expression Regulation, Neoplastic ; Humans ; Immunity, Innate ; Mammary Neoplasms, Experimental/metabolism/pathology ; Mice ; Mice, Transgenic ; Neoplasms, Glandular and Epithelial/*metabolism/*pathology ; PTEN Phosphohydrolase/deficiency/genetics/*metabolism ; Proto-Oncogene Protein c-ets-2/deficiency/metabolism ; Stromal Cells/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-07-08
    Description: Reactive oxygen species (ROS) are mutagenic and may thereby promote cancer. Normally, ROS levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors and is predominantly regulated by the transcription factor Nrf2 (also known as Nfe2l2) and its repressor protein Keap1 (refs 2-5). In contrast to the acute physiological regulation of Nrf2, in neoplasia there is evidence for increased basal activation of Nrf2. Indeed, somatic mutations that disrupt the Nrf2-Keap1 interaction to stabilize Nrf2 and increase the constitutive transcription of Nrf2 target genes were recently identified, indicating that enhanced ROS detoxification and additional Nrf2 functions may in fact be pro-tumorigenic. Here, we investigated ROS metabolism in primary murine cells following the expression of endogenous oncogenic alleles of Kras, Braf and Myc, and found that ROS are actively suppressed by these oncogenes. K-Ras(G12D), B-Raf(V619E) and Myc(ERT2) each increased the transcription of Nrf2 to stably elevate the basal Nrf2 antioxidant program and thereby lower intracellular ROS and confer a more reduced intracellular environment. Oncogene-directed increased expression of Nrf2 is a new mechanism for the activation of the Nrf2 antioxidant program, and is evident in primary cells and tissues of mice expressing K-Ras(G12D) and B-Raf(V619E), and in human pancreatic cancer. Furthermore, genetic targeting of the Nrf2 pathway impairs K-Ras(G12D)-induced proliferation and tumorigenesis in vivo. Thus, the Nrf2 antioxidant and cellular detoxification program represents a previously unappreciated mediator of oncogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404470/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3404470/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeNicola, Gina M -- Karreth, Florian A -- Humpton, Timothy J -- Gopinathan, Aarthi -- Wei, Cong -- Frese, Kristopher -- Mangal, Dipti -- Yu, Kenneth H -- Yeo, Charles J -- Calhoun, Eric S -- Scrimieri, Francesca -- Winter, Jordan M -- Hruban, Ralph H -- Iacobuzio-Donahue, Christine -- Kern, Scott E -- Blair, Ian A -- Tuveson, David A -- CA084291/CA/NCI NIH HHS/ -- CA101973/CA/NCI NIH HHS/ -- CA105490/CA/NCI NIH HHS/ -- CA106610/CA/NCI NIH HHS/ -- CA111294/CA/NCI NIH HHS/ -- CA128920/CA/NCI NIH HHS/ -- CA62924/CA/NCI NIH HHS/ -- R01 CA101973/CA/NCI NIH HHS/ -- R01 CA101973-05/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 Jul 6;475(7354):106-9. doi: 10.1038/nature10189.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Li Ka Shing Centre, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21734707" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptor Proteins, Signal Transducing/genetics/metabolism ; Alleles ; Animals ; Antioxidants/metabolism ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic/genetics/*metabolism/*pathology ; Cells, Cultured ; Cytoskeletal Proteins/genetics/metabolism ; Extracellular Signal-Regulated MAP Kinases/metabolism ; Fibroblasts/metabolism ; Genes, myc/genetics ; Humans ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; JNK Mitogen-Activated Protein Kinases/metabolism ; MAP Kinase Signaling System ; Mice ; Mitogen-Activated Protein Kinase Kinases/metabolism ; NF-E2-Related Factor 2/deficiency/genetics/*metabolism ; NIH 3T3 Cells ; Oncogenes/*genetics ; Oxidation-Reduction ; Pancreatic Neoplasms/genetics/*metabolism/*pathology ; Proto-Oncogene Proteins B-raf/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Reactive Oxygen Species/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-02-07
    Description: Alveoli are gas-exchange sacs lined by squamous alveolar type (AT) 1 cells and cuboidal, surfactant-secreting AT2 cells. Classical studies suggested that AT1 arise from AT2 cells, but recent studies propose other sources. Here we use molecular markers, lineage tracing and clonal analysis to map alveolar progenitors throughout the mouse lifespan. We show that, during development, AT1 and AT2 cells arise directly from a bipotent progenitor, whereas after birth new AT1 cells derive from rare, self-renewing, long-lived, mature AT2 cells that produce slowly expanding clonal foci of alveolar renewal. This stem-cell function is broadly activated by AT1 injury, and AT2 self-renewal is selectively induced by EGFR (epidermal growth factor receptor) ligands in vitro and oncogenic Kras(G12D) in vivo, efficiently generating multifocal, clonal adenomas. Thus, there is a switch after birth, when AT2 cells function as stem cells that contribute to alveolar renewal, repair and cancer. We propose that local signals regulate AT2 stem-cell activity: a signal transduced by EGFR-KRAS controls self-renewal and is hijacked during oncogenesis, whereas another signal controls reprogramming to AT1 fate.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4013278/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Desai, Tushar J -- Brownfield, Douglas G -- Krasnow, Mark A -- P30 CA124435/CA/NCI NIH HHS/ -- U01 HL099995/HL/NHLBI NIH HHS/ -- U01 HL099999/HL/NHLBI NIH HHS/ -- England -- Nature. 2014 Mar 13;507(7491):190-4. doi: 10.1038/nature12930. Epub 2014 Feb 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA [2] Department of Internal Medicine, Division of Pulmonary and Critical Care, Stanford University School of Medicine, Stanford, California 94305-5307, USA. ; Department of Biochemistry and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305-5307, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24499815" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Differentiation ; Cell Division ; Cell Lineage ; Cell Transformation, Neoplastic/metabolism/pathology ; Cells, Cultured ; Cellular Reprogramming ; Clone Cells/cytology ; Female ; Lung/*cytology/embryology/*growth & development/pathology ; Lung Neoplasms/metabolism/*pathology ; Male ; Mice ; Models, Biological ; Multipotent Stem Cells/*cytology/metabolism/*pathology ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Pulmonary Alveoli/*cytology ; Receptor, Epidermal Growth Factor/metabolism ; *Regeneration ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-11-11
    Description: The move of vertebrates to a terrestrial lifestyle required major adaptations in their locomotory apparatus and reproductive organs. While the fin-to-limb transition has received considerable attention, little is known about the developmental and evolutionary origins of external genitalia. Similarities in gene expression have been interpreted as a potential evolutionary link between the limb and genitals; however, no underlying developmental mechanism has been identified. We re-examined this question using micro-computed tomography, lineage tracing in three amniote clades, and RNA-sequencing-based transcriptional profiling. Here we show that the developmental origin of external genitalia has shifted through evolution, and in some taxa limbs and genitals share a common primordium. In squamates, the genitalia develop directly from the budding hindlimbs, or the remnants thereof, whereas in mice the genital tubercle originates from the ventral and tail bud mesenchyme. The recruitment of different cell populations for genital outgrowth follows a change in the relative position of the cloaca, the genitalia organizing centre. Ectopic grafting of the cloaca demonstrates the conserved ability of different mesenchymal cells to respond to these genitalia-inducing signals. Our results support a limb-like developmental origin of external genitalia as the ancestral condition. Moreover, they suggest that a change in the relative position of the cloacal signalling centre during evolution has led to an altered developmental route for external genitalia in mammals, while preserving parts of the ancestral limb molecular circuitry owing to a common evolutionary origin.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294627/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4294627/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tschopp, Patrick -- Sherratt, Emma -- Sanger, Thomas J -- Groner, Anna C -- Aspiras, Ariel C -- Hu, Jimmy K -- Pourquie, Olivier -- Gros, Jerome -- Tabin, Clifford J -- R37 HD032443/HD/NICHD NIH HHS/ -- R37-HD032443/HD/NICHD NIH HHS/ -- England -- Nature. 2014 Dec 18;516(7531):391-4. doi: 10.1038/nature13819. Epub 2014 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA. ; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138, USA. ; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA. ; 1] Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA [2] Institut de Genetique et de Biologie Moleculaire et Cellulaire (IGBMC), 67400 Illkirch, France [3] Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA. ; Developmental and Stem Cell Biology Department, Institut Pasteur, 75724 Paris Cedex 15, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383527" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Evolution ; Cell Lineage ; Cloaca/anatomy & histology/*embryology ; Gene Expression Profiling ; Gene Expression Regulation, Developmental ; Genitalia/anatomy & histology/*embryology/metabolism ; Mice ; Phylogeny ; Signal Transduction ; Snakes/embryology ; Tissue Transplantation ; X-Ray Microtomography
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-10-30
    Description: Pancreatic cancer is a highly lethal malignancy with few effective therapies. We performed exome sequencing and copy number analysis to define genomic aberrations in a prospectively accrued clinical cohort (n = 142) of early (stage I and II) sporadic pancreatic ductal adenocarcinoma. Detailed analysis of 99 informative tumours identified substantial heterogeneity with 2,016 non-silent mutations and 1,628 copy-number variations. We define 16 significantly mutated genes, reaffirming known mutations (KRAS, TP53, CDKN2A, SMAD4, MLL3, TGFBR2, ARID1A and SF3B1), and uncover novel mutated genes including additional genes involved in chromatin modification (EPC1 and ARID2), DNA damage repair (ATM) and other mechanisms (ZIM2, MAP2K4, NALCN, SLC16A4 and MAGEA6). Integrative analysis with in vitro functional data and animal models provided supportive evidence for potential roles for these genetic aberrations in carcinogenesis. Pathway-based analysis of recurrently mutated genes recapitulated clustering in core signalling pathways in pancreatic ductal adenocarcinoma, and identified new mutated genes in each pathway. We also identified frequent and diverse somatic aberrations in genes described traditionally as embryonic regulators of axon guidance, particularly SLIT/ROBO signalling, which was also evident in murine Sleeping Beauty transposon-mediated somatic mutagenesis models of pancreatic cancer, providing further supportive evidence for the potential involvement of axon guidance genes in pancreatic carcinogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530898/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3530898/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Biankin, Andrew V -- Waddell, Nicola -- Kassahn, Karin S -- Gingras, Marie-Claude -- Muthuswamy, Lakshmi B -- Johns, Amber L -- Miller, David K -- Wilson, Peter J -- Patch, Ann-Marie -- Wu, Jianmin -- Chang, David K -- Cowley, Mark J -- Gardiner, Brooke B -- Song, Sarah -- Harliwong, Ivon -- Idrisoglu, Senel -- Nourse, Craig -- Nourbakhsh, Ehsan -- Manning, Suzanne -- Wani, Shivangi -- Gongora, Milena -- Pajic, Marina -- Scarlett, Christopher J -- Gill, Anthony J -- Pinho, Andreia V -- Rooman, Ilse -- Anderson, Matthew -- Holmes, Oliver -- Leonard, Conrad -- Taylor, Darrin -- Wood, Scott -- Xu, Qinying -- Nones, Katia -- Fink, J Lynn -- Christ, Angelika -- Bruxner, Tim -- Cloonan, Nicole -- Kolle, Gabriel -- Newell, Felicity -- Pinese, Mark -- Mead, R Scott -- Humphris, Jeremy L -- Kaplan, Warren -- Jones, Marc D -- Colvin, Emily K -- Nagrial, Adnan M -- Humphrey, Emily S -- Chou, Angela -- Chin, Venessa T -- Chantrill, Lorraine A -- Mawson, Amanda -- Samra, Jaswinder S -- Kench, James G -- Lovell, Jessica A -- Daly, Roger J -- Merrett, Neil D -- Toon, Christopher -- Epari, Krishna -- Nguyen, Nam Q -- Barbour, Andrew -- Zeps, Nikolajs -- Australian Pancreatic Cancer Genome Initiative -- Kakkar, Nipun -- Zhao, Fengmei -- Wu, Yuan Qing -- Wang, Min -- Muzny, Donna M -- Fisher, William E -- Brunicardi, F Charles -- Hodges, Sally E -- Reid, Jeffrey G -- Drummond, Jennifer -- Chang, Kyle -- Han, Yi -- Lewis, Lora R -- Dinh, Huyen -- Buhay, Christian J -- Beck, Timothy -- Timms, Lee -- Sam, Michelle -- Begley, Kimberly -- Brown, Andrew -- Pai, Deepa -- Panchal, Ami -- Buchner, Nicholas -- De Borja, Richard -- Denroche, Robert E -- Yung, Christina K -- Serra, Stefano -- Onetto, Nicole -- Mukhopadhyay, Debabrata -- Tsao, Ming-Sound -- Shaw, Patricia A -- Petersen, Gloria M -- Gallinger, Steven -- Hruban, Ralph H -- Maitra, Anirban -- Iacobuzio-Donahue, Christine A -- Schulick, Richard D -- Wolfgang, Christopher L -- Morgan, Richard A -- Lawlor, Rita T -- Capelli, Paola -- Corbo, Vincenzo -- Scardoni, Maria -- Tortora, Giampaolo -- Tempero, Margaret A -- Mann, Karen M -- Jenkins, Nancy A -- Perez-Mancera, Pedro A -- Adams, David J -- Largaespada, David A -- Wessels, Lodewyk F A -- Rust, Alistair G -- Stein, Lincoln D -- Tuveson, David A -- Copeland, Neal G -- Musgrove, Elizabeth A -- Scarpa, Aldo -- Eshleman, James R -- Hudson, Thomas J -- Sutherland, Robert L -- Wheeler, David A -- Pearson, John V -- McPherson, John D -- Gibbs, Richard A -- Grimmond, Sean M -- 13031/Cancer Research UK/United Kingdom -- 2P50CA101955/CA/NCI NIH HHS/ -- P01CA134292/CA/NCI NIH HHS/ -- P50 CA101955/CA/NCI NIH HHS/ -- P50 CA102701/CA/NCI NIH HHS/ -- P50CA062924/CA/NCI NIH HHS/ -- R01 CA097075/CA/NCI NIH HHS/ -- R01 CA97075/CA/NCI NIH HHS/ -- U54 HG003273/HG/NHGRI NIH HHS/ -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2012 Nov 15;491(7424):399-405. doi: 10.1038/nature11547. Epub 2012 Oct 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Kinghorn Cancer Centre, 370 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23103869" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Axons/*metabolism ; Carcinoma, Pancreatic Ductal/*genetics/*pathology ; Gene Dosage ; Gene Expression Regulation, Neoplastic ; Genome/*genetics ; Humans ; Kaplan-Meier Estimate ; Mice ; Mutation ; Pancreatic Neoplasms/*genetics/*pathology ; Proteins/genetics ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-07-27
    Description: Medulloblastoma is an aggressively growing tumour, arising in the cerebellum or medulla/brain stem. It is the most common malignant brain tumour in children, and shows tremendous biological and clinical heterogeneity. Despite recent treatment advances, approximately 40% of children experience tumour recurrence, and 30% will die from their disease. Those who survive often have a significantly reduced quality of life. Four tumour subgroups with distinct clinical, biological and genetic profiles are currently identified. WNT tumours, showing activated wingless pathway signalling, carry a favourable prognosis under current treatment regimens. SHH tumours show hedgehog pathway activation, and have an intermediate prognosis. Group 3 and 4 tumours are molecularly less well characterized, and also present the greatest clinical challenges. The full repertoire of genetic events driving this distinction, however, remains unclear. Here we describe an integrative deep-sequencing analysis of 125 tumour-normal pairs, conducted as part of the International Cancer Genome Consortium (ICGC) PedBrain Tumor Project. Tetraploidy was identified as a frequent early event in Group 3 and 4 tumours, and a positive correlation between patient age and mutation rate was observed. Several recurrent mutations were identified, both in known medulloblastoma-related genes (CTNNB1, PTCH1, MLL2, SMARCA4) and in genes not previously linked to this tumour (DDX3X, CTDNEP1, KDM6A, TBR1), often in subgroup-specific patterns. RNA sequencing confirmed these alterations, and revealed the expression of what are, to our knowledge, the first medulloblastoma fusion genes identified. Chromatin modifiers were frequently altered across all subgroups. These findings enhance our understanding of the genomic complexity and heterogeneity underlying medulloblastoma, and provide several potential targets for new therapeutics, especially for Group 3 and 4 patients.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662966/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3662966/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jones, David T W -- Jager, Natalie -- Kool, Marcel -- Zichner, Thomas -- Hutter, Barbara -- Sultan, Marc -- Cho, Yoon-Jae -- Pugh, Trevor J -- Hovestadt, Volker -- Stutz, Adrian M -- Rausch, Tobias -- Warnatz, Hans-Jorg -- Ryzhova, Marina -- Bender, Sebastian -- Sturm, Dominik -- Pleier, Sabrina -- Cin, Huriye -- Pfaff, Elke -- Sieber, Laura -- Wittmann, Andrea -- Remke, Marc -- Witt, Hendrik -- Hutter, Sonja -- Tzaridis, Theophilos -- Weischenfeldt, Joachim -- Raeder, Benjamin -- Avci, Meryem -- Amstislavskiy, Vyacheslav -- Zapatka, Marc -- Weber, Ursula D -- Wang, Qi -- Lasitschka, Barbel -- Bartholomae, Cynthia C -- Schmidt, Manfred -- von Kalle, Christof -- Ast, Volker -- Lawerenz, Chris -- Eils, Jurgen -- Kabbe, Rolf -- Benes, Vladimir -- van Sluis, Peter -- Koster, Jan -- Volckmann, Richard -- Shih, David -- Betts, Matthew J -- Russell, Robert B -- Coco, Simona -- Tonini, Gian Paolo -- Schuller, Ulrich -- Hans, Volkmar -- Graf, Norbert -- Kim, Yoo-Jin -- Monoranu, Camelia -- Roggendorf, Wolfgang -- Unterberg, Andreas -- Herold-Mende, Christel -- Milde, Till -- Kulozik, Andreas E -- von Deimling, Andreas -- Witt, Olaf -- Maass, Eberhard -- Rossler, Jochen -- Ebinger, Martin -- Schuhmann, Martin U -- Fruhwald, Michael C -- Hasselblatt, Martin -- Jabado, Nada -- Rutkowski, Stefan -- von Bueren, Andre O -- Williamson, Dan -- Clifford, Steven C -- McCabe, Martin G -- Collins, V Peter -- Wolf, Stephan -- Wiemann, Stefan -- Lehrach, Hans -- Brors, Benedikt -- Scheurlen, Wolfram -- Felsberg, Jorg -- Reifenberger, Guido -- Northcott, Paul A -- Taylor, Michael D -- Meyerson, Matthew -- Pomeroy, Scott L -- Yaspo, Marie-Laure -- Korbel, Jan O -- Korshunov, Andrey -- Eils, Roland -- Pfister, Stefan M -- Lichter, Peter -- P30 HD018655/HD/NICHD NIH HHS/ -- R01 CA109467/CA/NCI NIH HHS/ -- England -- Nature. 2012 Aug 2;488(7409):100-5. doi: 10.1038/nature11284.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg 69120, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22832583" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Amino Acid Sequence ; Cell Transformation, Neoplastic ; Cerebellar Neoplasms/classification/diagnosis/*genetics/pathology ; Child ; Chromatin/metabolism ; Chromosomes, Human/genetics ; DEAD-box RNA Helicases/genetics ; DNA Helicases/genetics ; DNA-Binding Proteins/genetics ; Genome, Human/*genetics ; Genomics ; Hedgehog Proteins/metabolism ; High-Throughput Nucleotide Sequencing ; Histone Demethylases/genetics ; Humans ; Medulloblastoma/classification/diagnosis/*genetics/pathology ; Methylation ; Mutation/genetics ; Mutation Rate ; Neoplasm Proteins/genetics ; Nuclear Proteins/genetics ; Oncogene Proteins, Fusion/genetics ; Phosphoprotein Phosphatases/genetics ; Polyploidy ; Receptors, Cell Surface/genetics ; Sequence Analysis, RNA ; Signal Transduction ; T-Box Domain Proteins/genetics ; Transcription Factors/genetics ; Wnt Proteins/metabolism ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-07-24
    Description: Medulloblastomas are the most common malignant brain tumours in children. Identifying and understanding the genetic events that drive these tumours is critical for the development of more effective diagnostic, prognostic and therapeutic strategies. Recently, our group and others described distinct molecular subtypes of medulloblastoma on the basis of transcriptional and copy number profiles. Here we use whole-exome hybrid capture and deep sequencing to identify somatic mutations across the coding regions of 92 primary medulloblastoma/normal pairs. Overall, medulloblastomas have low mutation rates consistent with other paediatric tumours, with a median of 0.35 non-silent mutations per megabase. We identified twelve genes mutated at statistically significant frequencies, including previously known mutated genes in medulloblastoma such as CTNNB1, PTCH1, MLL2, SMARCA4 and TP53. Recurrent somatic mutations were newly identified in an RNA helicase gene, DDX3X, often concurrent with CTNNB1 mutations, and in the nuclear co-repressor (N-CoR) complex genes GPS2, BCOR and LDB1. We show that mutant DDX3X potentiates transactivation of a TCF promoter and enhances cell viability in combination with mutant, but not wild-type, beta-catenin. Together, our study reveals the alteration of WNT, hedgehog, histone methyltransferase and now N-CoR pathways across medulloblastomas and within specific subtypes of this disease, and nominates the RNA helicase DDX3X as a component of pathogenic beta-catenin signalling in medulloblastoma.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413789/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3413789/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pugh, Trevor J -- Weeraratne, Shyamal Dilhan -- Archer, Tenley C -- Pomeranz Krummel, Daniel A -- Auclair, Daniel -- Bochicchio, James -- Carneiro, Mauricio O -- Carter, Scott L -- Cibulskis, Kristian -- Erlich, Rachel L -- Greulich, Heidi -- Lawrence, Michael S -- Lennon, Niall J -- McKenna, Aaron -- Meldrim, James -- Ramos, Alex H -- Ross, Michael G -- Russ, Carsten -- Shefler, Erica -- Sivachenko, Andrey -- Sogoloff, Brian -- Stojanov, Petar -- Tamayo, Pablo -- Mesirov, Jill P -- Amani, Vladimir -- Teider, Natalia -- Sengupta, Soma -- Francois, Jessica Pierre -- Northcott, Paul A -- Taylor, Michael D -- Yu, Furong -- Crabtree, Gerald R -- Kautzman, Amanda G -- Gabriel, Stacey B -- Getz, Gad -- Jager, Natalie -- Jones, David T W -- Lichter, Peter -- Pfister, Stefan M -- Roberts, Thomas M -- Meyerson, Matthew -- Pomeroy, Scott L -- Cho, Yoon-Jae -- CA050661/CA/NCI NIH HHS/ -- L40 NS063706/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- P30 HD18655/HD/NICHD NIH HHS/ -- R01 CA030002/CA/NCI NIH HHS/ -- R01 CA105607/CA/NCI NIH HHS/ -- R01 CA109467/CA/NCI NIH HHS/ -- R01 CA148699/CA/NCI NIH HHS/ -- R01 CA154480/CA/NCI NIH HHS/ -- R01 NS046789/NS/NINDS NIH HHS/ -- R01CA105607/CA/NCI NIH HHS/ -- R01CA109467/CA/NCI NIH HHS/ -- R01CA148699/CA/NCI NIH HHS/ -- R25 NS070682/NS/NINDS NIH HHS/ -- R25NS070682/NS/NINDS NIH HHS/ -- U54 HG003067/HG/NHGRI NIH HHS/ -- U54HG003067/HG/NHGRI NIH HHS/ -- Canadian Institutes of Health Research/Canada -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Aug 2;488(7409):106-10. doi: 10.1038/nature11329.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22820256" target="_blank"〉PubMed〈/a〉
    Keywords: Cerebellar Neoplasms/classification/*genetics ; Child ; DEAD-box RNA Helicases/chemistry/genetics/metabolism ; DNA Helicases/chemistry/genetics ; DNA-Binding Proteins/genetics ; Exome/*genetics ; Genome, Human/*genetics ; Hedgehog Proteins/metabolism ; Histone-Lysine N-Methyltransferase/genetics/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins/genetics ; LIM Domain Proteins/genetics ; Medulloblastoma/classification/*genetics ; Models, Molecular ; Mutation/*genetics ; Neoplasm Proteins/genetics ; Nuclear Proteins/chemistry/genetics ; Promoter Regions, Genetic/genetics ; Protein Structure, Tertiary/genetics ; Proto-Oncogene Proteins/genetics ; Receptors, Cell Surface/genetics ; Repressor Proteins/genetics ; Signal Transduction ; TCF Transcription Factors/metabolism ; Transcription Factors/chemistry/genetics ; Tumor Suppressor Protein p53/genetics ; Wnt Proteins/metabolism ; beta Catenin/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-26
    Description: In eukaryotic cells, post-translational histone modifications have an important role in gene regulation. Starting with early work on histone acetylation, a variety of residue-specific modifications have now been linked to RNA polymerase II (RNAP2) activity, but it remains unclear if these markers are active regulators of transcription or just passive byproducts. This is because studies have traditionally relied on fixed cell populations, meaning temporal resolution is limited to minutes at best, and correlated factors may not actually be present in the same cell at the same time. Complementary approaches are therefore needed to probe the dynamic interplay of histone modifications and RNAP2 with higher temporal resolution in single living cells. Here we address this problem by developing a system to track residue-specific histone modifications and RNAP2 phosphorylation in living cells by fluorescence microscopy. This increases temporal resolution to the tens-of-seconds range. Our single-cell analysis reveals histone H3 lysine-27 acetylation at a gene locus can alter downstream transcription kinetics by as much as 50%, affecting two temporally separate events. First acetylation enhances the search kinetics of transcriptional activators, and later the acetylation accelerates the transition of RNAP2 from initiation to elongation. Signatures of the latter can be found genome-wide using chromatin immunoprecipitation followed by sequencing. We argue that this regulation leads to a robust and potentially tunable transcriptional response.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stasevich, Timothy J -- Hayashi-Takanaka, Yoko -- Sato, Yuko -- Maehara, Kazumitsu -- Ohkawa, Yasuyuki -- Sakata-Sogawa, Kumiko -- Tokunaga, Makio -- Nagase, Takahiro -- Nozaki, Naohito -- McNally, James G -- Kimura, Hiroshi -- Howard Hughes Medical Institute/ -- England -- Nature. 2014 Dec 11;516(7530):272-5. doi: 10.1038/nature13714. Epub 2014 Sep 21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, USA [3] Transcription Imaging Consortium, Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147, USA. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [3] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; 1] Graduate School of Frontier Biosciences, Osaka University, Osaka, 565-0871, Japan [2] Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan. ; Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Japan Science and Technology Agency (JST), Core Research for Evolutional Science and Technology (CREST), Kawaguchi, Saitama, 332-0012, Japan [2] Department of Advanced Medical Initiatives, Faculty of Medicine, Kyushu University, Fukuoka, 812-8582, Japan. ; 1] Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan [2] RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, 230-0045, Japan. ; Department of Biotechnology Research, Kazusa DNA Research Institute, Chiba, 292-0818, Japan. ; Mab Institute Inc., Sapporo, 001-0021, Japan. ; 1] Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA [2] Institute for Soft Matter and Functional Materials, Helmholtz Zentrum Berlin, Berlin, 14109, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25252976" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Animals ; Cell Line, Tumor ; Cell Survival ; Chromatin Immunoprecipitation ; Enzyme Activation ; Genome/genetics ; Histones/*chemistry/*metabolism ; Kinetics ; Lysine/metabolism ; Mice ; Microscopy, Fluorescence ; Phosphorylation ; RNA Polymerase II/*metabolism ; *Single-Cell Analysis ; Time Factors ; Transcription Elongation, Genetic ; Transcription Initiation, Genetic ; *Transcription, Genetic
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-11-11
    Description: Inactivation of APC is a strongly predisposing event in the development of colorectal cancer, prompting the search for vulnerabilities specific to cells that have lost APC function. Signalling through the mTOR pathway is known to be required for epithelial cell proliferation and tumour growth, and the current paradigm suggests that a critical function of mTOR activity is to upregulate translational initiation through phosphorylation of 4EBP1 (refs 6, 7). This model predicts that the mTOR inhibitor rapamycin, which does not efficiently inhibit 4EBP1 (ref. 8), would be ineffective in limiting cancer progression in APC-deficient lesions. Here we show in mice that mTOR complex 1 (mTORC1) activity is absolutely required for the proliferation of Apc-deficient (but not wild-type) enterocytes, revealing an unexpected opportunity for therapeutic intervention. Although APC-deficient cells show the expected increases in protein synthesis, our study reveals that it is translation elongation, and not initiation, which is the rate-limiting component. Mechanistically, mTORC1-mediated inhibition of eEF2 kinase is required for the proliferation of APC-deficient cells. Importantly, treatment of established APC-deficient adenomas with rapamycin (which can target eEF2 through the mTORC1-S6K-eEF2K axis) causes tumour cells to undergo growth arrest and differentiation. Taken together, our data suggest that inhibition of translation elongation using existing, clinically approved drugs, such as the rapalogs, would provide clear therapeutic benefit for patients at high risk of developing colorectal cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304784/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4304784/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Faller, William J -- Jackson, Thomas J -- Knight, John R P -- Ridgway, Rachel A -- Jamieson, Thomas -- Karim, Saadia A -- Jones, Carolyn -- Radulescu, Sorina -- Huels, David J -- Myant, Kevin B -- Dudek, Kate M -- Casey, Helen A -- Scopelliti, Alessandro -- Cordero, Julia B -- Vidal, Marcos -- Pende, Mario -- Ryazanov, Alexey G -- Sonenberg, Nahum -- Meyuhas, Oded -- Hall, Michael N -- Bushell, Martin -- Willis, Anne E -- Sansom, Owen J -- 311301/European Research Council/International -- A7130/Cancer Research UK/United Kingdom -- G1000078/1/National Centre for the Replacement, Refinement and Reduction of Animals in Research/United Kingdom -- MC_UP_A600_1023/Medical Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2015 Jan 22;517(7535):497-500. doi: 10.1038/nature13896. Epub 2014 Nov 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK. ; Medical Research Council Toxicology Unit, Leicester LE1 9HN, UK. ; Institut Necker-Enfants Malades, CS 61431, Paris, France Institut National de la Sante et de la Recherche Medicale, U1151, F-75014 Paris, France Universite Paris Descartes, Sorbonne Paris Cite, 75006 Paris, France. ; Department of Pharmacology, Rutgers The State University of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA. ; Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montreal, Quebec H3A 1A3, Canada. ; Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel. ; Biozentrum, University of Basel, CH-4056 Basel, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25383520" target="_blank"〉PubMed〈/a〉
    Keywords: Adenomatous Polyposis Coli Protein/deficiency/genetics ; Animals ; Cell Proliferation ; Cell Transformation, Neoplastic/metabolism/*pathology ; Elongation Factor 2 Kinase/deficiency/genetics/metabolism ; Enzyme Activation ; Genes, APC ; Intestinal Neoplasms/genetics/*metabolism/*pathology ; Male ; Mice ; Mice, Inbred C57BL ; Multiprotein Complexes/*metabolism ; Oncogene Protein p55(v-myc)/metabolism ; *Peptide Chain Elongation, Translational ; Peptide Elongation Factor 2/metabolism ; Ribosomal Protein S6 Kinases/metabolism ; Signal Transduction ; TOR Serine-Threonine Kinases/*metabolism ; Wnt Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-01
    Description: During immune responses, antibodies are selected for their ability to bind to foreign antigens with high affinity, in part by their ability to undergo homotypic bivalent binding. However, this type of binding is not always possible. For example, the small number of gp140 glycoprotein spikes displayed on the surface of the human immunodeficiency virus (HIV) disfavours homotypic bivalent antibody binding. Here we show that during the human antibody response to HIV, somatic mutations that increase antibody affinity also increase breadth and neutralizing potency. Surprisingly, the responding naive and memory B cells produce polyreactive antibodies, which are capable of bivalent heteroligation between one high-affinity anti-HIV-gp140 combining site and a second low-affinity site on another molecular structure on HIV. Although cross-reactivity to self-antigens or polyreactivity is strongly selected against during B-cell development, it is a common serologic feature of certain infections in humans, including HIV, Epstein-Barr virus and hepatitis C virus. Seventy-five per cent of the 134 monoclonal anti-HIV-gp140 antibodies cloned from six patients with high titres of neutralizing antibodies are polyreactive. Despite the low affinity of the polyreactive combining site, heteroligation demonstrably increases the apparent affinity of polyreactive antibodies to HIV.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3699875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mouquet, Hugo -- Scheid, Johannes F -- Zoller, Markus J -- Krogsgaard, Michelle -- Ott, Rene G -- Shukair, Shetha -- Artyomov, Maxim N -- Pietzsch, John -- Connors, Mark -- Pereyra, Florencia -- Walker, Bruce D -- Ho, David D -- Wilson, Patrick C -- Seaman, Michael S -- Eisen, Herman N -- Chakraborty, Arup K -- Hope, Thomas J -- Ravetch, Jeffrey V -- Wardemann, Hedda -- Nussenzweig, Michel C -- 1 P01 AI081677/AI/NIAID NIH HHS/ -- P01 AI081677/AI/NIAID NIH HHS/ -- R01 AI047770/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 Sep 30;467(7315):591-5. doi: 10.1038/nature09385.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20882016" target="_blank"〉PubMed〈/a〉
    Keywords: Antibodies, Monoclonal/immunology ; Antibodies, Neutralizing/immunology ; Antibody Affinity/genetics/*immunology ; Antigen-Antibody Reactions/genetics/*immunology ; Cardiolipins/immunology ; Cell Line, Tumor ; Cross Reactions/genetics/immunology ; Enzyme-Linked Immunosorbent Assay ; Epitopes/*chemistry/*immunology ; HIV Antibodies/genetics/*immunology ; HIV Antigens/chemistry/*immunology ; HIV-1/chemistry/*immunology ; Humans ; Immunoglobulin Fab Fragments/genetics/immunology ; Immunoglobulin Heavy Chains/genetics/immunology ; Mutation ; Surface Plasmon Resonance ; env Gene Products, Human Immunodeficiency Virus/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...