ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Phylogeny  (12)
  • Atmosphere/chemistry  (7)
  • Sequence Analysis, DNA
  • American Association for the Advancement of Science (AAAS)  (12)
  • Nature Publishing Group (NPG)  (11)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (12)
  • Nature Publishing Group (NPG)  (11)
  • 1
    Publication Date: 2002-12-14
    Description: The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dehal, Paramvir -- Satou, Yutaka -- Campbell, Robert K -- Chapman, Jarrod -- Degnan, Bernard -- De Tomaso, Anthony -- Davidson, Brad -- Di Gregorio, Anna -- Gelpke, Maarten -- Goodstein, David M -- Harafuji, Naoe -- Hastings, Kenneth E M -- Ho, Isaac -- Hotta, Kohji -- Huang, Wayne -- Kawashima, Takeshi -- Lemaire, Patrick -- Martinez, Diego -- Meinertzhagen, Ian A -- Necula, Simona -- Nonaka, Masaru -- Putnam, Nik -- Rash, Sam -- Saiga, Hidetoshi -- Satake, Masanobu -- Terry, Astrid -- Yamada, Lixy -- Wang, Hong-Gang -- Awazu, Satoko -- Azumi, Kaoru -- Boore, Jeffrey -- Branno, Margherita -- Chin-Bow, Stephen -- DeSantis, Rosaria -- Doyle, Sharon -- Francino, Pilar -- Keys, David N -- Haga, Shinobu -- Hayashi, Hiroko -- Hino, Kyosuke -- Imai, Kaoru S -- Inaba, Kazuo -- Kano, Shungo -- Kobayashi, Kenji -- Kobayashi, Mari -- Lee, Byung-In -- Makabe, Kazuhiro W -- Manohar, Chitra -- Matassi, Giorgio -- Medina, Monica -- Mochizuki, Yasuaki -- Mount, Steve -- Morishita, Tomomi -- Miura, Sachiko -- Nakayama, Akie -- Nishizaka, Satoko -- Nomoto, Hisayo -- Ohta, Fumiko -- Oishi, Kazuko -- Rigoutsos, Isidore -- Sano, Masako -- Sasaki, Akane -- Sasakura, Yasunori -- Shoguchi, Eiichi -- Shin-i, Tadasu -- Spagnuolo, Antoinetta -- Stainier, Didier -- Suzuki, Miho M -- Tassy, Olivier -- Takatori, Naohito -- Tokuoka, Miki -- Yagi, Kasumi -- Yoshizaki, Fumiko -- Wada, Shuichi -- Zhang, Cindy -- Hyatt, P Douglas -- Larimer, Frank -- Detter, Chris -- Doggett, Norman -- Glavina, Tijana -- Hawkins, Trevor -- Richardson, Paul -- Lucas, Susan -- Kohara, Yuji -- Levine, Michael -- Satoh, Nori -- Rokhsar, Daniel S -- HD-37105/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Dec 13;298(5601):2157-67.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉U.S. Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12481130" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Apoptosis ; Base Sequence ; Cellulose/metabolism ; Central Nervous System/physiology ; Ciona intestinalis/anatomy & histology/classification/*genetics/physiology ; Computational Biology ; Endocrine System/physiology ; Gene Dosage ; Gene Duplication ; Genes ; Genes, Homeobox ; *Genome ; Heart/embryology/physiology ; Immunity/genetics ; Molecular Sequence Data ; Multigene Family ; Muscle Proteins/genetics ; Organizers, Embryonic/physiology ; Phylogeny ; Polymorphism, Genetic ; Proteins/genetics/physiology ; *Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Species Specificity ; Thyroid Gland/physiology ; Urochordata/genetics ; Vertebrates/anatomy & histology/classification/genetics/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-02-26
    Description: Most aerobic bacteria secrete siderophores to facilitate iron acquisition. Two families of siderophores were isolated from strains belonging to two different genera of marine bacteria. The aquachelins, from Halomonas aquamarina strain DS40M3, and the marinobactins, from Marinobacter sp. strains DS40M6 and DS40M8, each contain a unique peptidic head group that coordinates iron(III) and an appendage of one of a series of fatty acid moieties. These siderophores have low critical micelle concentrations (CMCs). In the absence of iron, the marinobactins are present as micelles at concentrations exceeding their CMC; upon addition of iron(III), the micelles undergo a spontaneous phase change to form vesicles. These observations suggest that unique iron acquisition mechanisms may have evolved in marine bacteria.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez, J S -- Zhang, G P -- Holt, P D -- Jung, H T -- Carrano, C J -- Haygood, M G -- Butler, A -- GM38130/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2000 Feb 18;287(5456):1245-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106-9510, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10678827" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acids/analysis ; Chemistry, Physical ; Cryoelectron Microscopy ; Evolution, Molecular ; Fatty Acids/analysis ; Ferric Compounds/metabolism ; Gammaproteobacteria/*chemistry/isolation & purification/metabolism ; Halomonas/*chemistry/isolation & purification/metabolism ; Light ; Micelles ; Phylogeny ; Physicochemical Phenomena ; Scattering, Radiation ; Seawater/microbiology ; Siderophores/*chemistry/isolation & purification/metabolism ; Surface Properties
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-11-05
    Description: The meridional overturning circulation (MOC) of the Atlantic Ocean is considered to be one of the most important components of the climate system. This is because its warm surface currents, such as the Gulf Stream, redistribute huge amounts of energy from tropical to high latitudes and influence regional weather and climate patterns, whereas its lower limb ventilates the deep ocean and affects the storage of carbon in the abyss, away from the atmosphere. Despite its significance for future climate, the operation of the MOC under contrasting climates of the past remains controversial. Nutrient-based proxies and recent model simulations indicate that during the Last Glacial Maximum the convective activity in the North Atlantic Ocean was much weaker than at present. In contrast, rate-sensitive radiogenic (231)Pa/(230)Th isotope ratios from the North Atlantic have been interpreted to indicate only minor changes in MOC strength. Here we show that the basin-scale abyssal circulation of the Atlantic Ocean was probably reversed during the Last Glacial Maximum and was dominated by northward water flow from the Southern Ocean. These conclusions are based on new high-resolution data from the South Atlantic Ocean that establish the basin-scale north to south gradient in (231)Pa/(230)Th, and thus the direction of the deep ocean circulation. Our findings are consistent with nutrient-based proxies and argue that further analysis of (231)Pa/(230)Th outside the North Atlantic basin will enhance our understanding of past ocean circulation, provided that spatial gradients are carefully considered. This broader perspective suggests that the modern pattern of the Atlantic MOC-with a prominent southerly flow of deep waters originating in the North Atlantic-arose only during the Holocene epoch.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Negre, Cesar -- Zahn, Rainer -- Thomas, Alexander L -- Masque, Pere -- Henderson, Gideon M -- Martinez-Mendez, Gema -- Hall, Ian R -- Mas, Jose L -- England -- Nature. 2010 Nov 4;468(7320):84-8. doi: 10.1038/nature09508.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institut de Ciencia i Tecnologia Ambientals (ICTA), Universitat Autonoma de Barcelona, 08193 Bellaterra, Spain. cesar@negre.us〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21048764" target="_blank"〉PubMed〈/a〉
    Keywords: Atlantic Ocean ; Atmosphere/chemistry ; Carbon/analysis ; *Cold Climate ; Foraminifera/metabolism ; History, Ancient ; *Ice Cover ; Seawater/*analysis ; Temperature ; *Water Movements
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-05-21
    Description: Malaria caused by Plasmodium falciparum is a disease that is responsible for 880,000 deaths per year worldwide. Vaccine development has proved difficult and resistance has emerged for most antimalarial drugs. To discover new antimalarial chemotypes, we have used a phenotypic forward chemical genetic approach to assay 309,474 chemicals. Here we disclose structures and biological activity of the entire library-many of which showed potent in vitro activity against drug-resistant P. falciparum strains-and detailed profiling of 172 representative candidates. A reverse chemical genetic study identified 19 new inhibitors of 4 validated drug targets and 15 novel binders among 61 malarial proteins. Phylochemogenetic profiling in several organisms revealed similarities between Toxoplasma gondii and mammalian cell lines and dissimilarities between P. falciparum and related protozoans. One exemplar compound displayed efficacy in a murine model. Our findings provide the scientific community with new starting points for malaria drug discovery.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874979/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2874979/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Guiguemde, W Armand -- Shelat, Anang A -- Bouck, David -- Duffy, Sandra -- Crowther, Gregory J -- Davis, Paul H -- Smithson, David C -- Connelly, Michele -- Clark, Julie -- Zhu, Fangyi -- Jimenez-Diaz, Maria B -- Martinez, Maria S -- Wilson, Emily B -- Tripathi, Abhai K -- Gut, Jiri -- Sharlow, Elizabeth R -- Bathurst, Ian -- El Mazouni, Farah -- Fowble, Joseph W -- Forquer, Isaac -- McGinley, Paula L -- Castro, Steve -- Angulo-Barturen, Inigo -- Ferrer, Santiago -- Rosenthal, Philip J -- Derisi, Joseph L -- Sullivan, David J -- Lazo, John S -- Roos, David S -- Riscoe, Michael K -- Phillips, Margaret A -- Rathod, Pradipsinh K -- Van Voorhis, Wesley C -- Avery, Vicky M -- Guy, R Kiplin -- AI045774/AI/NIAID NIH HHS/ -- AI053680/AI/NIAID NIH HHS/ -- AI067921/AI/NIAID NIH HHS/ -- AI075517/AI/NIAID NIH HHS/ -- AI075594/AI/NIAID NIH HHS/ -- AI080625/AI/NIAID NIH HHS/ -- AI082617/AI/NIAID NIH HHS/ -- AI28724/AI/NIAID NIH HHS/ -- AI35707/AI/NIAID NIH HHS/ -- AI53862/AI/NIAID NIH HHS/ -- AI772682/AI/NIAID NIH HHS/ -- CA78039/CA/NCI NIH HHS/ -- F32 AI077268/AI/NIAID NIH HHS/ -- F32 AI077268-03/AI/NIAID NIH HHS/ -- P01 AI035707/AI/NIAID NIH HHS/ -- P01 AI035707-140007/AI/NIAID NIH HHS/ -- P01 CA078039-10/CA/NCI NIH HHS/ -- P41 RR001614/RR/NCRR NIH HHS/ -- P41 RR001614-246970/RR/NCRR NIH HHS/ -- R01 AI045774/AI/NIAID NIH HHS/ -- R01 AI045774-09/AI/NIAID NIH HHS/ -- R37 AI028724/AI/NIAID NIH HHS/ -- R37 AI028724-17/AI/NIAID NIH HHS/ -- R56 AI082617/AI/NIAID NIH HHS/ -- R56 AI082617-01/AI/NIAID NIH HHS/ -- U01 AI053862/AI/NIAID NIH HHS/ -- U01 AI053862-05/AI/NIAID NIH HHS/ -- U01 AI075594-03/AI/NIAID NIH HHS/ -- UL1 TR000005/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2010 May 20;465(7296):311-5. doi: 10.1038/nature09099.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemical Biology and Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20485428" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antimalarials/*analysis/isolation & purification/*pharmacology ; Cell Line ; *Drug Discovery ; Drug Evaluation, Preclinical ; Drug Resistance/drug effects ; Drug Therapy, Combination ; Erythrocytes/drug effects/parasitology ; Humans ; Malaria, Falciparum/drug therapy/parasitology ; Mice ; Phenotype ; Phylogeny ; Plasmodium falciparum/*drug effects/*genetics/metabolism ; Reproducibility of Results ; Small Molecule Libraries/chemistry/pharmacology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2015-02-06
    Description: Theory and climate modelling suggest that the sensitivity of Earth's climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth's climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice-albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez-Boti, M A -- Foster, G L -- Chalk, T B -- Rohling, E J -- Sexton, P F -- Lunt, D J -- Pancost, R D -- Badger, M P S -- Schmidt, D N -- England -- Nature. 2015 Feb 5;518(7537):49-54. doi: 10.1038/nature14145.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, SO14 3ZH, UK. ; 1] Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, Southampton, SO14 3ZH, UK [2] Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; Centre for Earth, Planetary, Space and Astronomical Research, The Open University, Milton Keynes, MK7 6AA, UK. ; 1] School of Geographical Sciences, University of Bristol, University Road, Bristol, BS8 1SS, UK [2] The Cabot Institute, University of Bristol, Bristol BS8 1UJ, UK. ; 1] The Cabot Institute, University of Bristol, Bristol BS8 1UJ, UK [2] Organic Geochemistry Unit, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK. ; 1] The Cabot Institute, University of Bristol, Bristol BS8 1UJ, UK [2] School of Earth Sciences, University of Bristol, Wills Memorial Building, Bristol, BS8 1RJ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25652996" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Boron/analysis/chemistry ; Carbon Dioxide/*analysis ; *Climate ; *Feedback ; Foraminifera/metabolism ; Geologic Sediments/chemistry ; History, Ancient ; Hydrogen-Ion Concentration ; Ice Cover ; Oceans and Seas ; Oxygen Isotopes ; Temperature ; Time Factors
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2015-02-13
    Description: Atmospheric CO2 fluctuations over glacial-interglacial cycles remain a major challenge to our understanding of the carbon cycle and the climate system. Leading hypotheses put forward to explain glacial-interglacial atmospheric CO2 variations invoke changes in deep-ocean carbon storage, probably modulated by processes in the Southern Ocean, where much of the deep ocean is ventilated. A central aspect of such models is that, during deglaciations, an isolated glacial deep-ocean carbon reservoir is reconnected with the atmosphere, driving the atmospheric CO2 rise observed in ice-core records. However, direct documentation of changes in surface ocean carbon content and the associated transfer of carbon to the atmosphere during deglaciations has been hindered by the lack of proxy reconstructions that unambiguously reflect the oceanic carbonate system. Radiocarbon activity tracks changes in ocean ventilation, but not in ocean carbon content, whereas proxies that record increased deglacial upwelling do not constrain the proportion of upwelled carbon that is degassed relative to that which is taken up by the biological pump. Here we apply the boron isotope pH proxy in planktic foraminifera to two sediment cores from the sub-Antarctic Atlantic and the eastern equatorial Pacific as a more direct tracer of oceanic CO2 outgassing. We show that surface waters at both locations, which partly derive from deep water upwelled in the Southern Ocean, became a significant source of carbon to the atmosphere during the last deglaciation, when the concentration of atmospheric CO2 was increasing. This oceanic CO2 outgassing supports the view that the ventilation of a deep-ocean carbon reservoir in the Southern Ocean had a key role in the deglacial CO2 rise, although our results allow for the possibility that processes operating in other regions may also have been important for the glacial-interglacial ocean-atmosphere exchange of carbon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Martinez-Boti, M A -- Marino, G -- Foster, G L -- Ziveri, P -- Henehan, M J -- Rae, J W B -- Mortyn, P G -- Vance, D -- England -- Nature. 2015 Feb 12;518(7538):219-22. doi: 10.1038/nature14155.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK. ; 1] Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain [2] Research School of Earth Sciences, The Australian National University, Canberra, Australian Capital Territory 2601, Australia. ; 1] Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain [2] Institucio Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Catalonia, 08010, Spain [3] Earth and Climate Cluster, Department of Earth Sciences, Faculty of Earth and Life Sciences, VU Universiteit Amsterdam, 1081HV Amsterdam, The Netherlands. ; 1] Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton Waterfront Campus, Southampton SO14 3ZH, UK [2] Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06511, USA. ; 1] Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA [2] Department of Earth and Environmental Sciences, University of St Andrews, St Andrews KY16 9AL, UK. ; 1] Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain [2] Department of Geography, Universitat Autonoma de Barcelona, Bellaterra, Catalonia, 08193, Spain. ; Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zurich, NW D81.4, Zurich 8092, Switzerland.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25673416" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere/chemistry ; Boron/*analysis/*chemistry ; Carbon Dioxide/*analysis ; Climate ; Foraminifera ; Freezing ; History, Ancient ; Hydrogen-Ion Concentration ; Ice Cover/*chemistry ; Isotopes ; Oceans and Seas ; Seawater/*chemistry
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2007-10-13
    Description: Chlamydomonas reinhardtii is a unicellular green alga whose lineage diverged from land plants over 1 billion years ago. It is a model system for studying chloroplast-based photosynthesis, as well as the structure, assembly, and function of eukaryotic flagella (cilia), which were inherited from the common ancestor of plants and animals, but lost in land plants. We sequenced the approximately 120-megabase nuclear genome of Chlamydomonas and performed comparative phylogenomic analyses, identifying genes encoding uncharacterized proteins that are likely associated with the function and biogenesis of chloroplasts or eukaryotic flagella. Analyses of the Chlamydomonas genome advance our understanding of the ancestral eukaryotic cell, reveal previously unknown genes associated with photosynthetic and flagellar functions, and establish links between ciliopathy and the composition and function of flagella.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875087/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Merchant, Sabeeha S -- Prochnik, Simon E -- Vallon, Olivier -- Harris, Elizabeth H -- Karpowicz, Steven J -- Witman, George B -- Terry, Astrid -- Salamov, Asaf -- Fritz-Laylin, Lillian K -- Marechal-Drouard, Laurence -- Marshall, Wallace F -- Qu, Liang-Hu -- Nelson, David R -- Sanderfoot, Anton A -- Spalding, Martin H -- Kapitonov, Vladimir V -- Ren, Qinghu -- Ferris, Patrick -- Lindquist, Erika -- Shapiro, Harris -- Lucas, Susan M -- Grimwood, Jane -- Schmutz, Jeremy -- Cardol, Pierre -- Cerutti, Heriberto -- Chanfreau, Guillaume -- Chen, Chun-Long -- Cognat, Valerie -- Croft, Martin T -- Dent, Rachel -- Dutcher, Susan -- Fernandez, Emilio -- Fukuzawa, Hideya -- Gonzalez-Ballester, David -- Gonzalez-Halphen, Diego -- Hallmann, Armin -- Hanikenne, Marc -- Hippler, Michael -- Inwood, William -- Jabbari, Kamel -- Kalanon, Ming -- Kuras, Richard -- Lefebvre, Paul A -- Lemaire, Stephane D -- Lobanov, Alexey V -- Lohr, Martin -- Manuell, Andrea -- Meier, Iris -- Mets, Laurens -- Mittag, Maria -- Mittelmeier, Telsa -- Moroney, James V -- Moseley, Jeffrey -- Napoli, Carolyn -- Nedelcu, Aurora M -- Niyogi, Krishna -- Novoselov, Sergey V -- Paulsen, Ian T -- Pazour, Greg -- Purton, Saul -- Ral, Jean-Philippe -- Riano-Pachon, Diego Mauricio -- Riekhof, Wayne -- Rymarquis, Linda -- Schroda, Michael -- Stern, David -- Umen, James -- Willows, Robert -- Wilson, Nedra -- Zimmer, Sara Lana -- Allmer, Jens -- Balk, Janneke -- Bisova, Katerina -- Chen, Chong-Jian -- Elias, Marek -- Gendler, Karla -- Hauser, Charles -- Lamb, Mary Rose -- Ledford, Heidi -- Long, Joanne C -- Minagawa, Jun -- Page, M Dudley -- Pan, Junmin -- Pootakham, Wirulda -- Roje, Sanja -- Rose, Annkatrin -- Stahlberg, Eric -- Terauchi, Aimee M -- Yang, Pinfen -- Ball, Steven -- Bowler, Chris -- Dieckmann, Carol L -- Gladyshev, Vadim N -- Green, Pamela -- Jorgensen, Richard -- Mayfield, Stephen -- Mueller-Roeber, Bernd -- Rajamani, Sathish -- Sayre, Richard T -- Brokstein, Peter -- Dubchak, Inna -- Goodstein, David -- Hornick, Leila -- Huang, Y Wayne -- Jhaveri, Jinal -- Luo, Yigong -- Martinez, Diego -- Ngau, Wing Chi Abby -- Otillar, Bobby -- Poliakov, Alexander -- Porter, Aaron -- Szajkowski, Lukasz -- Werner, Gregory -- Zhou, Kemin -- Grigoriev, Igor V -- Rokhsar, Daniel S -- Grossman, Arthur R -- GM07185/GM/NIGMS NIH HHS/ -- GM42143/GM/NIGMS NIH HHS/ -- R01 GM032843/GM/NIGMS NIH HHS/ -- R01 GM042143/GM/NIGMS NIH HHS/ -- R01 GM042143-09/GM/NIGMS NIH HHS/ -- R01 GM060992/GM/NIGMS NIH HHS/ -- R01 GM062915-06/GM/NIGMS NIH HHS/ -- R37 GM030626/GM/NIGMS NIH HHS/ -- R37 GM042143/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2007 Oct 12;318(5848):245-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17932292" target="_blank"〉PubMed〈/a〉
    Keywords: Algal Proteins/*genetics/*physiology ; Animals ; *Biological Evolution ; Chlamydomonas reinhardtii/*genetics/physiology ; Chloroplasts/metabolism ; Computational Biology ; DNA, Algal/genetics ; Flagella/metabolism ; Genes ; *Genome ; Genomics ; Membrane Transport Proteins/genetics/physiology ; Molecular Sequence Data ; Multigene Family ; Photosynthesis/genetics ; Phylogeny ; Plants/genetics ; Proteome ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-12-08
    Description: Maize domestication (Zea mays ssp. mays L.) resulted in a wide diversity of native landraces that represent an invaluable source of genetic information for exploring natural variation and genome evolution. We sequenced de novo the approximately 2-gigabase genome of the Mexican landrace Palomero Toluqueno (Palomero) and compared its features to those of the modern inbred line B73. We revealed differences concordant with its ancient origin and identified chromosomal regions of low nucleotide variability that contain domestication genes involved in heavy-metal detoxification. Our results indicate that environmental changes were important selective forces acting on maize domestication.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vielle-Calzada, Jean-Philippe -- Martinez de la Vega, Octavio -- Hernandez-Guzman, Gustavo -- Ibarra-Laclette, Enrique -- Alvarez-Mejia, Cesar -- Vega-Arreguin, Julio C -- Jimenez-Moraila, Beatriz -- Fernandez-Cortes, Araceli -- Corona-Armenta, Guillermo -- Herrera-Estrella, Luis -- Herrera-Estrella, Alfredo -- New York, N.Y. -- Science. 2009 Nov 20;326(5956):1078. doi: 10.1126/science.1178437.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratorio Nacional de Genomica para la Biodiversidad, CINVESTAV Irapuato, Km 9.6 Libramiento Norte Carretera Irapuato-Leon, 36500 Irapuato, Mexico.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19965420" target="_blank"〉PubMed〈/a〉
    Keywords: Chromosome Mapping ; Chromosomes, Plant/genetics ; Crops, Agricultural/genetics/growth & development ; *Genes, Plant ; Genetic Variation ; *Genome, Plant ; Metals, Heavy/analysis/*metabolism/toxicity ; Molecular Sequence Data ; *Selection, Genetic ; Sequence Analysis, DNA ; Sequence Homology, Nucleic Acid ; Soil/analysis ; Zea mays/*genetics/growth & development/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-13
    Description: Estimates suggest that only one-tenth of the true fungal diversity has been described. Among numerous fungal lineages known only from environmental DNA sequences, Soil Clone Group 1 is the most ubiquitous. These globally distributed fungi may dominate below-ground fungal communities, but their placement in the fungal tree of life has been uncertain. Here, we report cultures of this group and describe the class, Archaeorhizomycetes, phylogenetically placed within subphylum Taphrinomycotina in the Ascomycota. Archaeorhizomycetes comprises hundreds of cryptically reproducing filamentous species that do not form recognizable mycorrhizal structures and have saprotrophic potential, yet are omnipresent in roots and rhizosphere soil and show ecosystem and host root habitat specificity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rosling, Anna -- Cox, Filipa -- Cruz-Martinez, Karelyn -- Ihrmark, Katarina -- Grelet, Gwen-Aelle -- Lindahl, Bjorn D -- Menkis, Audrius -- James, Timothy Y -- New York, N.Y. -- Science. 2011 Aug 12;333(6044):876-9. doi: 10.1126/science.1206958.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Forest Mycology and Pathology, Uppsala BioCentre, SLU, Box 7026, 750 07 Uppsala, Sweden. anna.rosling@slu.se〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21836015" target="_blank"〉PubMed〈/a〉
    Keywords: *Ascomycota/classification/genetics/growth & development/isolation & purification ; Coniferophyta/microbiology ; *Ecosystem ; Genes, Fungal ; Genes, rRNA ; Meristem/*microbiology ; Molecular Sequence Data ; *Mycorrhizae/classification/genetics ; Phylogeny ; Rhizosphere ; *Soil Microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2002-12-10
    Description: We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manning, G -- Whyte, D B -- Martinez, R -- Hunter, T -- Sudarsanam, S -- New York, N.Y. -- Science. 2002 Dec 6;298(5600):1912-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉SUGEN Inc., 230 East Grand Avenue, South San Francisco, CA 94080, USA. gerard-manning@sugen.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12471243" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Catalysis ; Chromosome Mapping ; Computational Biology ; Databases, Genetic ; Genes ; *Genome, Human ; Humans ; Neoplasms/genetics ; Phylogeny ; Protein Kinases/chemistry/classification/*genetics/*metabolism ; Protein Structure, Tertiary ; Pseudogenes ; Sequence Analysis, DNA ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...