ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
  • 2
  • 3
    Publication Date: 2021-02-08
    Description: Coccoliths comprise a major fraction of the global carbonate sink. Therefore, changes in coccolithophores' Ca isotopic fractionation could affect seawater Ca isotopic composition, affecting interpretations of the global Ca cycle and related changes in seawater chemistry and climate. Despite this, a quantitative interpretation of coccolith Ca isotopic fractionation and a clear understanding of the mechanisms driving it are not yet available. Here, we address this gap in knowledge by developing a simple model (CaSri–Co) to track coccolith Ca isotopic fractionation during cellular Ca uptake and allocation to calcification. We then apply it to published and new δ44/40Ca and Sr/Ca data of cultured coccolithophores of the species Emiliania huxleyi and Gephyrocapsa oceanica. We identify changes in calcification rates, Ca retention efficiency and solvation–desolvation rates as major drivers of the Ca isotopic fractionation and Sr/Ca variations observed in cultures. Higher calcification rates, higher Ca retention efficiencies and lower solvation–desolvation rates increase both coccolith Ca isotopic fractionation and Sr/Ca. Coccolith Ca isotopic fractionation is most sensitive to changes in solvation–desolvation rates. Changes in Ca retention efficiency may be a major driver of coccolith Sr/Ca variations in cultures. We suggest that substantial changes in the water structure strength caused by past changes in temperature could have induced significant changes in coccolithophores' Ca isotopic fractionation, potentially having some influence on seawater Ca isotopic composition. We also suggest a potential effect on Ca isotopic fractionation via modification of the solvation environment through cellular exudates, a hypothesis that remains to be tested.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-01-02
    Description: Shallow coral reefs provide food, income, well-being and coastal protection to countries around the Indian Ocean and Asia. These reefs are under threat due to many anthropogenic stressors including pollution, sedimentation, overfishing, sea surface warming and habitat destruction. Ocean acidification interacts with these factors to exacerbate stress on coral reefs. Effective solutions in tackling the impact of ocean acidification require a thorough understanding of the current adaptive capacity of each nation to deal with the consequences. Here, we aim to help the decision-making process for policy makers in dealing with these future challenges at the regional and national levels. We recommend that a series of evaluations be made to understand the current status of each nation in this region in dealing with ocean acidification impacts by assessing the climate policy, education, policy coherence, related research activities, adaptive capacity of reef-dependent economic sectors and local management. Indonesia and Thailand, are selected as case studies. We also highlight general recommendations on mitigation and adaptation to ocean acidification impacts on coral reefs and propose well-designed research program would be necessary for developing a more targeted policy agenda in this region.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-01-05
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2024-02-07
    Description: Highlights: • The epoch of the Anthropocene, a period during which human activity has been the dominant influence on climate and the environment, has witnessed a decline in oxygen concentrations and an expansion of oxygen-depleted environments in both coastal and open ocean systems since the middle of the 20th century. • This review paper provides a synthesis of system-specific drivers of low oxygen in a range of case studies representing marine systems in the open ocean, on continental shelves, in enclosed seas and in the coastal environment. • Identification of similar and contrasting responses within and across system types and corresponding oxygen regimes is shown to be informative both in understanding and isolating key controlling processes and provides a sound basis for predicting change under anticipated future conditions. • Case studies were selected to achieve a balance in system diversity and global coverage. • Each case study describes system attributes, including the present-day oxygen environment and known trends in oxygen concentrations over time. • Central to each case study is the identification of the physical and biogeochemical processes that determine oxygen concentrations through the tradeoff between ventilation and respiration. • Spatial distributions of oxygen and time series of oxygen data provide the opportunity to identify trends in oxygen availability and have allowed various drivers of low oxygen to be distinguished through correlative and causative relationships. • Deoxygenation results from a complex interplay of hydrographic and biogeochemical processes and the superposition of these processes, some additive and others subtractive, makes attribution to any particular driver challenging. • System-specific models are therefore required to achieve a quantitative understanding of these processes and of the feedbacks between processes at varying scales. Abstract: The epoch of the Anthropocene, a period during which human activity has been the dominant influence on climate and the environment, has witnessed a decline in oxygen concentrations and an expansion of oxygen-depleted environments in both coastal and open ocean systems since the middle of the 20th century. This paper provides a review of system-specific drivers of low oxygen in a range of case studies representing marine systems in the open ocean, on continental shelves, in enclosed seas and in the coastal environment. Identification of similar and contrasting responses within and across system types and corresponding oxygen regimes is shown to be informative both in understanding and isolating key controlling processes and provides a sound basis for predicting change under anticipated future conditions. Case studies were selected to achieve a balance in system diversity and global coverage. Each case study describes system attributes, including the present-day oxygen environment and known trends in oxygen concentrations over time. Central to each case study is the identification of the physical and biogeochemical processes that determine oxygen concentrations through the tradeoff between ventilation and respiration. Spatial distributions of oxygen and time series of oxygen data provide the opportunity to identify trends in oxygen availability and have allowed various drivers of low oxygen to be distinguished through correlative and causative relationships. Deoxygenation results from a complex interplay of hydrographic and biogeochemical processes and the superposition of these processes, some additive and others subtractive, makes attribution to any particular driver challenging. System-specific models are therefore required to achieve a quantitative understanding of these processes and of the feedbacks between processes at varying scales.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2022-05-25
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Geochimica et Cosmochimica Acta 123 (2013): 322–337, doi:10.1016/j.gca.2013.06.011.
    Description: Despite the importance of diatoms in regulating climate and the existence of large opal-containing sediments in key air-ocean exchange areas, most geochemical proxy records are based on carbonates. Among them, Boron (B) content and isotopic composition have been widely used to reconstruct pH from foraminifera and coral fossils. We assessed the possibility of a pH/CO2 seawater concentration control on B content in diatom opal to determine whether or not frustule B concentrations could be used as a pH proxy or to clarify algae physiological responses to acidifying pH. We cultured two well-studied diatom species, Thalassiosira pseudonana and Thalassiosira weissflogii at varying pH conditions and determined Si and C quotas. Frustule B content was measured by both laser-ablation inductively coupled mass spectrometry (LA-ICPMS) and secondary ion mass spectrometry (SIMS/ion probe). For both species, frustules grown at higher pH have higher B contents and higher Si requirements per fixed C. If this trend is representative of diatom silicification in a future more acidic ocean, it could contribute to changes in the efficiency of diatom ballasting and C export, as well as changes in the contribution of diatoms relative to other phytoplankton groups in Si-limited regions. If B enters the cell through the same transporter employed for HCO3− uptake, an increased HCO3− requirement with decreasing CO2 concentrations (higher pH), and higher B(OH)4/HCO3− ratios would explain the observed increase in frustule B content with increasing pH. The mechanism of B transport from the site of uptake to the site of silica deposition is unknown, but may occur via silicon transport vesicles, in which B(OH)4− may be imported for B detoxification and/or as part of a pH regulation strategy either though Na-dependent B(OH)4−/Cl− antiport or B(OH)4−/H+ antiport. B deposition in the silica matrix may occur via substitution of a B(OH)4− for a negatively charged SiO− formed during silicification. With the current analytical precision, B content of frustules is unlikely to resolve ocean pH with a precision of paleoceanographic interest. However, if frustule B content was controlled mainly by HCO3− uptake for photosynthesis, which appears to show a threshold behavior, then measurements of B content might reveal the varying importance of active HCO3− acquisition mechanisms of diatoms in the past.
    Description: This work was funded by the European Community under the project ERC-STG-240222-PACE.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-09-30
    Description: This Scientific Summary on Multiple Ocean Stressors for Policy Makers offers a reference for all concerned stakeholders to understand and discuss all types of ocean stressors. This document will help coordinate action to better understand how multiple stressors interact and how the cumulative pressures they cause can be tackled and managed. It is a first step towards increased socio-ecological resilience to multiple ocean stressors (Figure 1). Ecosystem-Based Management (EBM)1 recognizes the complex and interconnected nature of ecosystems, and the integral role of humans in these ecosystems. EBM integrates ecological, social and governmental principles. It considers the tradeoffs and interactions between ocean stakeholders (e.g. fishing, shipping, energy extraction) and their goals, while addressing the reduction of conflicts and the negative cumulative impacts of human activities on ecosystem resilience and sustainability. Thus, EBM is an ideal science-based approach for managing the impacts of cumulative stressors on marine ecosystems. The United Nations Decade of Ocean Science for Sustainable Development (2021–2030; Ocean Decade), which is based on a multi-stakeholder consultative process, identified 10 Ocean Decade Challenges. Challenge 2: Understand the effects of multiple stressors on ocean ecosystems, and develop solutions to monitor, protect, manage and restore ecosystems and their biodiversity under changing environmental, social and climate conditions addresses the overall outcomes of the Decade. In particular, outcomes aimed at a clean, healthy and resilient, safe and predicted, sustainably harvested and productive, and accessible ocean, with open and equitable access to data, information and technology and innovation by 2030. This Scientific Summary for Policy Makers is also a call to action underlining the urgency to understand, model and manage multiple ocean stressors now. We cannot manage what we do not understand, and we cannot be efficient without prioritization of ocean actions appropriate to the place and time.
    Description: OPENASFA INPUT The complete report should be cited as follows: IOC-UNESCO. 2022. Multiple Ocean Stressors: A Scientific Summary for Policy Makers. P.W. Boyd et al. (eds). Paris, UNESCO. 20 pp. (IOC Information Series, 1404) doi:10.25607/OBP-1724
    Description: Published
    Description: Refereed
    Keywords: Oceans ; Marine Ecosystems ; Marine pollution ; Global warming ; Human activities effects ; Environmental monitoring ; Oceanographic Research
    Repository Name: AquaDocs
    Type: Report
    Format: 22pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-09-15
    Description: Oxygen is critical to the health of the ocean. It structures aquatic ecosystems and is a fundamental requirement for marine life from the intertidal zone to the greatest depths of the ocean. Oxygen is declining in the ocean. Since the 1960s, the area of low oxygen water in the open ocean has increased by 4.5 million km2, and over 500 low oxygen sites have been identified in estuaries and other coastal water bodies. Human activities are a major cause of oxygen decline in both the open ocean and coastal waters. Burning of fossil fuels and discharges from agriculture and human waste, which result in climate change and increased nitrogen and phosphorus inputs, are the primary causes.
    Description: Published
    Description: Refereed
    Keywords: Global Ocean Oxygen Network ; GO2NE ; ASFA_2015::O::Oxygen ; ASFA_2015::D::Deoxygenation ; ASFA_2015::E::Ecosystems ; ASFA_2015::H::Human impact
    Repository Name: AquaDocs
    Type: Report
    Format: 40pp.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    UNESOC-IOC and International Group for Marine Ecological Time Series (IGMETS) | Paris, France
    Publication Date: 2022-09-24
    Description: Ship-based biogeochemical and ecological time series are one of the most valuable tools to characterize and quantify ocean ecosystems. These programmes continuously provided major breakthroughs in understanding ecosystem variability, allow quantification of the ocean carbon cycle, and help understand the processes that link biodiversity, food webs, and changes in services that benefit human societies. A quantum jump in regional and global ocean ecosystem science can be gained by aggregating observations from individual time series that are distributed across different oceans and which are managed by different countries. The collective value of these data is greater than that provided by each time series individually. However, maintaining time series requires a commitment by the science community and sponsor agencies.
    Description: OPENASFA INPUT
    Description: Published
    Description: Not Known
    Keywords: Ocean time series ; Human impact ; ASFA_2015::S::Ship models ; ASFA_2015::E::Ecosystems ; ASFA_2015::B::Biodiversity
    Repository Name: AquaDocs
    Type: Report
    Format: Poster
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...