ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • PANGAEA  (10)
  • AGU (American Geophysical Union)  (2)
  • National Academy of Sciences  (2)
  • British Ecological Society  (1)
  • National Academy of Sciences of the United States of America  (1)
Collection
Keywords
  • 11
    facet.materialart.
    Unknown
    PANGAEA
    Publication Date: 2024-02-17
    Keywords: A109; A111; A115; A119; Alo9_CPER; Antromare1_OTSB12; Antromare1_OTSB13; Antromare1_OTSB14; Antromare1_OTSB15; Barcelona; BIOACID; Biological Impacts of Ocean Acidification; Chlorophyll a; CTD/Rosette; CTD-RO; DEPTH, water; Event label; Mallorca; Mediterranean Sea; Oxygen; Salinity; Species; Temperature, water; Turbidity
    Type: Dataset
    Format: text/tab-separated-values, 78 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Courtney, Travis A; Lebrato, Mario; Bates, Nicolas R; Collins, Andrew; de Putron, Samantha J; Garley, Rebecca; Johnson, Rod; Molinero, Juan-Carlos; Noyes, Timothy J; Sabine, Christopher L; Andersson, Andreas J (2017): Environmental controls on modern scleractinian coral and reef-scale calcification. Science Advances, 3(11), e1701356, https://doi.org/10.1126/sciadv.1701356
    Publication Date: 2024-03-15
    Description: Modern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony (Porites astreoides and Diploria labyrinthiformis) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef. On the basis of multimodel climate simulations (Coupled Model Intercomparison Project Phase 5) and assuming sufficient coral nutrition, our results suggest that P. astreoides and D. labyrinthiformis coral calcification rates in Bermuda could increase throughout the 21st century as a result of gradual warming predicted under a minimum CO2 emissions pathway [representative concentration pathway (RCP) 2.6] with positive 21st-century calcification rates potentially maintained under a reduced CO2 emissions pathway (RCP 4.5). These results highlight the potential benefits of rapid reductions in global anthropogenic CO2 emissions for 21st-century Bermuda coral reefs and the ecosystem services they provide.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Brightness; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Cnidaria; Coast and continental shelf; Crescent_Reef; Date; Diploria labyrinthiformis; Entire community; Event label; EXP; Experiment; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Hog_Reef; LATITUDE; LONGITUDE; Month; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Porites astreoides; Rocky-shore community; Salinity; Score on PC1; Single species; Temperate; Temperature, water; Type; Years
    Type: Dataset
    Format: text/tab-separated-values, 2280 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Rouco, Mónica; Branson, O; Lebrato, Mario; Iglesias-Rodriguez, Debora (2013): The effect of nitrate and phosphate availability on Emiliania huxleyi (NZEH) physiology under different CO2 scenarios. Frontiers in Microbiology, 4, https://doi.org/10.3389/fmicb.2013.00155
    Publication Date: 2024-05-22
    Description: Growth and calcification of the marine coccolithophorid Emiliania huxleyi is affected by ocean acidification and macronutrients limitation and its response varies between strains. Here we investigated the physiological performance of a highly calcified E. huxleyi strain, NZEH, in a multiparametric experiment. Cells were exposed to different CO2 levels (ranging from 250 to 1314 µatm) under three nutrient conditions [nutrient replete (R), nitrate limited (-N), and phosphate limited (-P)]. We focused on calcite and organic carbon quotas and on nitrate and phosphate utilization by analyzing the activity of nitrate reductase (NRase) and alkaline phosphatase (APase), respectively. Particulate inorganic (PIC) and organic (POC) carbon quotas increased with increasing CO2 under R conditions but a different pattern was observed under nutrient limitation. The PIC:POC ratio decreased with increasing CO2 in nutrient limited cultures. Coccolith length increased with CO2 under all nutrient conditions but the coccosphere volume varied depending on the nutrient treatment. Maximum APase activity was found at 561 matm of CO2 (pH 7.92) in -P cultures and in R conditions, NRase activity increased linearly with CO2. These results suggest that E. huxleyi's competitive ability for nutrient uptake might be altered in future high-CO2 oceans. The combined dataset will be useful in model parameterizations of the carbon cycle and ocean acidification.
    Keywords: Alkaline phosphatase, para-Nitrophenylphosphate per cell; Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate, standard deviation; Bicarbonate ion; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chromista; Coccoliths, volume; Coccoliths, volume, standard deviation; Coccosphere, length; Coccosphere, length, standard deviation; Coulometric titration; Emiliania huxleyi; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Haptophyta; Irradiance; Irradiance, standard deviation; Laboratory experiment; Laboratory strains; Macro-nutrients; Nitrate; Nitrate, standard deviation; Nitrate reductase activity, per total protein; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate inorganic carbon per cell; Particulate inorganic carbon per cell, standard deviation; Particulate organic carbon, per cell; Particulate organic carbon content per cell, standard deviation; Particulate organic nitrogen per cell; Particulate organic nitrogen per cell, standard deviation; Particulate organic phosphorus per cell; Particulate organic phosphorus per cell, standard deviation; Pelagos; pH; pH, standard deviation; Phosphate; Phosphate, standard deviation; Phytoplankton; Potentiometric titration; Salinity; Single species; South Pacific; Species; Table; Temperature, water; Temperature, water, standard deviation; Treatment; Trientalis-type
    Type: Dataset
    Format: text/tab-separated-values, 1422 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Müller, Marius N; Lebrato, Mario; Riebesell, Ulf; Barcelos e Ramos, Joana; Schulz, Kai Georg; Blanco-Ameijeiras, S; Sett, Scarlett; Eisenhauer, Anton; Stoll, Heather M (2014): Influence of temperature and CO2 on the strontium and magnesium composition of coccolithophore calcite. Biogeosciences, 11(4), 1065-1075, https://doi.org/10.5194/bg-11-1065-2014
    Publication Date: 2024-05-27
    Description: Marine calcareous sediments provide a fundamental basis for palaeoceanographic studies aiming to reconstruct past oceanic conditions and understand key biogeochemical element cycles. Calcifying unicellular phytoplankton (coccolithophores) are a major contributor to both carbon and calcium cycling by photosynthesis and the production of calcite (coccoliths) in the euphotic zone, and the subsequent long-term deposition and burial into marine sediments. Here we present data from controlled laboratory experiments on four coccolithophore species and elucidate the relation between the divalent cation (Sr, Mg and Ca) partitioning in coccoliths and cellular physiology (growth, calcification and photosynthesis). Coccolithophores were cultured under different seawater temperature and carbonate chemistry conditions. The partition coefficient of strontium (DSr) was positively correlated with both carbon dioxide (pCO2) and temperature but displayed no coherent relation to particulate organic and inorganic carbon production rates. Furthermore, DSr correlated positively with cellular growth rates when driven by temperature but no correlation was present when changes in growth rates were pCO2-induced. Our results demonstrate the complex interaction between environmental forcing and physiological control on the strontium partitioning in coccolithophore calcite and challenge interpretations of the coccolith Sr / Ca ratio from high-pCO2 environments (e.g. Palaeocene-Eocene thermal maximum). The partition coefficient of magnesium (DMg) displayed species-specific differences and elevated values under nutrient limitation. No conclusive correlation between coccolith DMg and temperature was observed but pCO2 induced a rising trend in coccolith DMg. Interestingly, the best correlation was found between coccolith DMg and chlorophyll a production, suggesting that chlorophyll a and calcite associated Mg originate from the same intracellular pool. These and previous findings indicate that Mg is transported into the cell and to the site of calcification via different pathways than Ca and Sr. Consequently, the coccolith Mg / Ca ratio should be decoupled from the seawater Mg / Ca ratio. This study gives an extended insight into the driving factors influencing the coccolith Mg / Ca ratio and should be considered for future palaeoproxy calibrations.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Aragonite saturation state; Bicarbonate ion; Bicarbonate ion, standard deviation; Biomass/Abundance/Elemental composition; Bottles or small containers/Aquaria (〈20 L); Calcidiscus quadriperforatus; Calcite saturation state; Calcite saturation state, standard deviation; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, dissolved, standard deviation; Carbon, inorganic, particulate, production per cell; Carbon, organic, particulate, production per cell; Carbon, organic, particulate/Nitrogen, particulate ratio; Carbon, organic, particulate/Nitrogen, particulate ratio, standard deviation; Carbonate ion; Carbonate ion, standard deviation; Carbonate system computation flag; Carbon dioxide; Carbon dioxide, standard deviation; Chlorophyll a, production, standard deviation; Chlorophyll a production per cell; Chromista; Coccolithus braarudii; Coulometric titration; Emiliania huxleyi; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gephyrocapsa oceanica; Growth rate; Growth rate, standard deviation; Haptophyta; Iron/Calcium ratio; Irradiance; Laboratory experiment; Laboratory strains; Light:Dark cycle; Magnesium/Calcium ratio; Magnesium/Calcium ratio, standard deviation; Magnesium distribution coefficient; Nitrogen, total, particulate, production per cell; Nitrogen, total, particulate production, standard deviation; Not applicable; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon, production, standard deviation; Particulate inorganic carbon/particulate organic carbon ratio; Particulate inorganic carbon/particulate organic carbon ratio, standard deviation; Particulate organic carbon, production, standard deviation; Pelagos; pH; pH, standard deviation; Phosphorus/Calcium ratio; Phytoplankton; Potentiometric titration; Salinity; Single species; Species; Strontium, partition coefficient; Strontium/Calcium ratio; Strontium/Calcium ratio, standard deviation; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 2247 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Sett, Scarlett; Bach, Lennart Thomas; Schulz, Kai Georg; Koch-Klavsen, Signe; Lebrato, Mario; Riebesell, Ulf (2014): Temperature Modulates Coccolithophorid Sensitivity of Growth, Photosynthesis and Calcification to Increasing Seawater pCO2. PLoS ONE, 9(2), e88308, https://doi.org/10.1371/journal.pone.0088308
    Publication Date: 2024-05-27
    Description: Increasing atmospheric CO2 concentrations are expected to impact pelagic ecosystem functioning in the near future by driving ocean warming and acidification. While numerous studies have investigated impacts of rising temperature and seawater acidification on planktonic organisms separately, little is presently known on their combined effects. To test for possible synergistic effects we exposed two coccolithophore species, Emiliania huxleyi and Gephyrocapsa oceanica, to a CO2 gradient ranging from ~0.5-250 µmol/kg (i.e. ~20-6000 µatm pCO2) at three different temperatures (i.e. 10, 15, 20°C for E. huxleyi and 15, 20, 25°C for G. oceanica). Both species showed CO2-dependent optimum-curve responses for growth, photosynthesis and calcification rates at all temperatures. Increased temperature generally enhanced growth and production rates and modified sensitivities of metabolic processes to increasing CO2. CO2 optimum concentrations for growth, calcification, and organic carbon fixation rates were only marginally influenced from low to intermediate temperatures. However, there was a clear optimum shift towards higher CO2 concentrations from intermediate to high temperatures in both species. Our results demonstrate that the CO2 concentration where optimum growth, calcification and carbon fixation rates occur is modulated by temperature. Thus, the response of a coccolithophore strain to ocean acidification at a given temperature can be negative, neutral or positive depending on that strain's temperature optimum. This emphasizes that the cellular responses of coccolithophores to ocean acidification can only be judged accurately when interpreted in the proper eco-physiological context of a given strain or species. Addressing the synergistic effects of changing carbonate chemistry and temperature is an essential step when assessing the success of coccolithophores in the future ocean.
    Keywords: Alkalinity, total; Aragonite saturation state; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Calcification/Dissolution; Calcite saturation state; Calculated; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbon, inorganic, particulate, production per cell; Carbon, organic, particulate, production per cell; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chromista; Emiliania huxleyi; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Gephyrocapsa oceanica; Growth/Morphology; Growth rate; Haptophyta; Laboratory experiment; Laboratory strains; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Particulate inorganic carbon/particulate organic carbon ratio; Pelagos; pH; Phytoplankton; Potentiometric titration; Primary production/Photosynthesis; Salinity; Single species; Species; Temperature; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 1958 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2022-05-26
    Description: © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Lebrato, M., Garbe-Schönberg, D., Müller, M. N., Blanco-Ameijeiras, S., Feely, R. A., Lorenzoni, L., Molinero, J. C., Bremer, K., Jones, D. O. B., Iglesias-Rodriguez, D., Greeley, D., Lamare, M. D., Paulmier, A., Graco, M., Cartes, J., Barcelos E Ramos, J., de Lara, A., Sanchez-Leal, R., Jimenez, P., Paparazzo, F. E., Hartman, S. E., Westernströer, U., Küter, M., Benavides, R., da Silva, A. F., Bell, S., Payne, C., Olafsdottir, S., Robinson, K., Jantunen, L. M., Korablev, A., Webster, R. J., Jones, E. M., Gilg, O., Bailly du Bois, P., Beldowski, J., Ashjian, C., Yahia, N. D., Twining, B., Chen, X. G., Tseng, L. C., Hwang, J. S., Dahms, H. U., & Oschlies, A. Global variability in seawater Mg:Ca and Sr:Ca ratios in the modern ocean. Proceedings of the National Academy of Sciences of the United States of America, 117(36), (2020): 22281-22292, doi:10.1073/pnas.1918943117.
    Description: Seawater Mg:Ca and Sr:Ca ratios are biogeochemical parameters reflecting the Earth–ocean–atmosphere dynamic exchange of elements. The ratios’ dependence on the environment and organisms' biology facilitates their application in marine sciences. Here, we present a measured single-laboratory dataset, combined with previous data, to test the assumption of limited seawater Mg:Ca and Sr:Ca variability across marine environments globally. High variability was found in open-ocean upwelling and polar regions, shelves/neritic and river-influenced areas, where seawater Mg:Ca and Sr:Ca ratios range from ∼4.40 to 6.40 mmol:mol and ∼6.95 to 9.80 mmol:mol, respectively. Open-ocean seawater Mg:Ca is semiconservative (∼4.90 to 5.30 mol:mol), while Sr:Ca is more variable and nonconservative (∼7.70 to 8.80 mmol:mol); both ratios are nonconservative in coastal seas. Further, the Ca, Mg, and Sr elemental fluxes are connected to large total alkalinity deviations from International Association for the Physical Sciences of the Oceans (IAPSO) standard values. Because there is significant modern seawater Mg:Ca and Sr:Ca ratios variability across marine environments we cannot absolutely assume that fossil archives using taxa-specific proxies reflect true global seawater chemistry but rather taxa- and process-specific ecosystem variations, reflecting regional conditions. This variability could reconcile secular seawater Mg:Ca and Sr:Ca ratio reconstructions using different taxa and techniques by assuming an error of 1 to 1.50 mol:mol, and 1 to 1.90 mmol:mol, respectively. The modern ratios’ variability is similar to the reconstructed rise over 20 Ma (Neogene Period), nurturing the question of seminonconservative behavior of Ca, Mg, and Sr over modern Earth geological history with an overlooked environmental effect.
    Description: We thank the researchers, staff, students, and volunteers in all the expeditions around the world for their contributions. One anonymous referee and Bernhard Peucker-Ehenbrink, Woods Hole Oceanographic Institution, contributed significantly to the final version of the manuscript. This study was developed under a grant from the Federal Ministry of Education and Research to D.G.-S. under contract 03F0722A, by the Kiel Cluster of Excellence “The Future Ocean” (D1067/87) to A.O. and M.L., and by the “European project on Ocean Acidification” (European Community’s Seventh Framework Programme FP7/2007-2013, grant agreement 211384) to A.O. and M.L. Additional funding was provided from project DOSMARES CTM2010-21810-C03-02, by the UK Natural Environment Research Council, to the National Oceanography Centre. This is Pacific Marine Environmental Laboratory contribution number 5046.
    Keywords: global ; seawater ; Mg:Ca ; Sr:Ca ; biogeochemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...