ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Courtney, Travis A; Lebrato, Mario; Bates, Nicolas R; Collins, Andrew; de Putron, Samantha J; Garley, Rebecca; Johnson, Rod; Molinero, Juan-Carlos; Noyes, Timothy J; Sabine, Christopher L; Andersson, Andreas J (2017): Environmental controls on modern scleractinian coral and reef-scale calcification. Science Advances, 3(11), e1701356, https://doi.org/10.1126/sciadv.1701356
    Publication Date: 2024-03-15
    Description: Modern reef-building corals sustain a wide range of ecosystem services because of their ability to build calcium carbonate reef systems. The influence of environmental variables on coral calcification rates has been extensively studied, but our understanding of their relative importance is limited by the absence of in situ observations and the ability to decouple the interactions between different properties. We show that temperature is the primary driver of coral colony (Porites astreoides and Diploria labyrinthiformis) and reef-scale calcification rates over a 2-year monitoring period from the Bermuda coral reef. On the basis of multimodel climate simulations (Coupled Model Intercomparison Project Phase 5) and assuming sufficient coral nutrition, our results suggest that P. astreoides and D. labyrinthiformis coral calcification rates in Bermuda could increase throughout the 21st century as a result of gradual warming predicted under a minimum CO2 emissions pathway [representative concentration pathway (RCP) 2.6] with positive 21st-century calcification rates potentially maintained under a reduced CO2 emissions pathway (RCP 4.5). These results highlight the potential benefits of rapid reductions in global anthropogenic CO2 emissions for 21st-century Bermuda coral reefs and the ecosystem services they provide.
    Keywords: Alkalinity, total; Animalia; Aragonite saturation state; Benthic animals; Benthos; Bicarbonate ion; Brightness; Calcification/Dissolution; Calcification rate; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chlorophyll a; Cnidaria; Coast and continental shelf; Crescent_Reef; Date; Diploria labyrinthiformis; Entire community; Event label; EXP; Experiment; Field observation; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Hog_Reef; LATITUDE; LONGITUDE; Month; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); pH; Porites astreoides; Rocky-shore community; Salinity; Score on PC1; Single species; Temperate; Temperature, water; Type; Years
    Type: Dataset
    Format: text/tab-separated-values, 2280 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 14 (2017): 4637-4662, doi:10.5194/bg-14-4637-2017.
    Description: The stoichiometry of biological components and their influence on dissolved distributions have long been of interest in the study of the oceans. Cobalt has the smallest oceanic inventory of inorganic micronutrients and hence is particularly vulnerable to influence by internal oceanic processes including euphotic zone uptake, remineralization, and scavenging. Here we observe not only large variations in dCo : P stoichiometry but also the acceleration of those dCo : P ratios in the upper water column in response to several environmental processes. The ecological stoichiometry of total dissolved cobalt (dCo) was examined using data from a US North Atlantic GEOTRACES transect and from a zonal South Atlantic GEOTRACES-compliant transect (GA03/3_e and GAc01) by Redfieldian analysis of its statistical relationships with the macronutrient phosphate. Trends in the dissolved cobalt to phosphate (dCo : P) stoichiometric relationships were evident in the basin-scale vertical structure of cobalt, with positive dCo : P slopes in the euphotic zone and negative slopes found in the ocean interior and in coastal environments. The euphotic positive slopes were often found to accelerate towards the surface and this was interpreted as being due to the combined influence of depleted phosphate, phosphorus-sparing (conserving) mechanisms, increased alkaline phosphatase metalloenzyme production (a zinc or perhaps cobalt enzyme), and biochemical substitution of Co for depleted Zn. Consistent with this, dissolved Zn (dZn) was found to be drawn down to only 2-fold more than dCo, despite being more than 18-fold more abundant in the ocean interior. Particulate cobalt concentrations increased in abundance from the base of the euphotic zone to become  ∼  10 % of the overall cobalt inventory in the upper euphotic zone with high stoichiometric values of  ∼  400 µmol Co mol−1 P. Metaproteomic results from the Bermuda Atlantic Time-series Study (BATS) station found cyanobacterial isoforms of the alkaline phosphatase enzyme to be prevalent in the upper water column, as well as a sulfolipid biosynthesis protein indicative of P sparing. The negative dCo : P relationships in the ocean interior became increasingly vertical with depth, and were consistent with the sum of scavenging and remineralization processes (as shown by their dCo : P vector sums). Attenuation of the remineralization with depth resulted in the increasingly vertical dCo : P relationships. Analysis of particulate Co with particulate Mn and particulate phosphate also showed positive linear relationships below the euphotic zone, consistent with the presence and increased relative influence of Mn oxide particles involved in scavenging. Visualization of dCo : P slopes across an ocean section revealed hotspots of scavenging and remineralization, such as at the hydrothermal vents and below the oxygen minimum zone (OMZ) region, respectively, while that of an estimate of Co* illustrated stoichiometrically depleted values in the mesopelagic and deep ocean due to scavenging. This study provides insights into the coupling between the dissolved and particulate phase that ultimately creates Redfield stoichiometric ratios, demonstrating that the coupling is not an instantaneous process and is influenced by the element inventory and rate of exchange between phases. Cobalt's small water column inventory and the influence of external factors on its biotic stoichiometry can erode its limited inertia and result in an acceleration of the dissolved stoichiometry towards that of the particulate phase in the upper euphotic zone. As human use of cobalt grows exponentially with widespread adoption of lithium ion batteries, there is a potential to affect the limited biogeochemical inertia of cobalt and its resultant ecology in the oceanic euphotic zone.
    Description: This work was funded by the National Science Foundation as part of the US GEOTRACES North Atlantic Zonal Transect program under grants OCE-0928414 and OCE-1435056 (to Mak A. Saito), OCE-0928289 (to Benjamin S. Twining), OCE-0963026 (to Phoebe Lam) and support from the Gordon and Betty Moore Foundation (3782 to Mak A. Saito).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-21
    Description: Gas exchange between the atmosphere and ocean interior profoundly impacts global climate and biogeochemistry. However, our understanding of the relevant physical processes remains limited by a scarcity of direct observations. Dissolved noble gases in the deep ocean are powerful tracers of physical air-sea interaction due to their chemical and biological inertness, yet their isotope ratios have remained underexplored. Here, we present high-precision noble gas isotope and elemental ratios from the deep North Atlantic (~32°N, 64°W) to evaluate gas exchange parameterizations using an ocean circulation model. The unprecedented precision of these data reveal deep-ocean undersaturation of heavy noble gases and isotopes resulting from cooling-driven air-to-sea gas transport associated with deep convection in the northern high lati-tudes. Our data also imply an underappreciated and large role for bubble-mediated gas exchange in the global air-sea transfer of sparingly soluble gases, including O2, N2, and SF6. Using noble gases to validate the physical representation of air-sea gas exchange in a model also provides a unique opportunity to distinguish physical from biogeochemical signals. As a case study, we compare dissolved N2/Ar measurements in the deep North Atlantic to physics-only model predictions, revealing excess N2 from benthic denitrification in older deep waters (below 2.9 km). These data indicate that the rate of fixed N removal in the deep Northeastern Atlantic is at least three times higher than the global deep-ocean mean, suggesting tight coupling with organic carbon export and raising potential future implications for the marine N cycle.
    Description: NSF, UK NERC, University of Oxford Advanced Research Computing facility
    Description: https://www.bco-dmo.org/project/887496
    Description: research
    Keywords: ddc:551 ; gas exchange ; nitrogen cycle ; overturning circulation ; air-sea interaction ; noble gases
    Language: English
    Type: doc-type:article , publishedVersion
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1520-4804
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-13
    Description: Background After European Medicines Agency (EMA) approval of axicabtagene ciloleucel and tisagenlecleucel for the treatment of relapsed/refractory (r/r) high-grade lymphoma in 2018, England was one of the first European countries granting fully funded access to these CD19 CAR-T therapies. Both products are available through the National Health Service England (NHSE) Cancer Drug Fund until their cost-effectiveness has been determined. The NHSE CAR-T program has been set up in a structure aiming to implement robust and transparent criteria for patient selection and to ensure equity of treatment access: CAR-T slots are approved by a weekly National CAR-T Clinical Panel (NCCP), consisting of independent clinical experts, patient representatives, and delegates from each CAR-T centre; treatment is delivered in 7 geographically spread commissioned CAR-T centres (Birmingham, Bristol, King's College Hospital London, University Hospital London, The Christie Manchester, Manchester Royal Infirmary, Newcastle). Here, we report prospective data on the first 122 lymphoma patients approved by the NCCP. Methods Patients with r/r high-grade lymphoma referred to the NCCP between December 2018 and July 2019 and deemed eligible for treatment with CD19 CAR-T were analysed. Eligibility was assessed in the CAR-T centre's tumor board, based on organ function and fitness (performance status 0/1), absence of active CNS disease, and biopsy confirmation of r/r high-grade lymphoma. The final decision on patient eligibility was made by consensus through the NCCP independent clinical panel. CAR-T product selection for each patient was done by the CAR-T centre, mainly on the basis of manufacturing slot availability. Results 122 patients were approved for treatment with CD19 CAR-T therapy by the panel. CAR-T centres selected 76 patients for axicabtagene ciloleucel and 46 for tisagenlecleucel. Patients' median age was 56 years (range 18-75). 62% were male. 87 (71%) patients had de novo diffuse large B-cell lymphoma, 29 (24%) transformed lymphoma (23 from follicular- and 6 from marginal zone lymphoma), and 6 (5%) primary mediastinal B-cell lymphoma. 96 (79%) patients had biopsy confirmation of disease prior to submission. 71 (58%) patients had received 2 prior lines of therapy for high-grade lymphoma, 51 (42%) patients 3 or more treatment lines (maximum 6). 5 patients had previous allogeneic, 19 previous autologous transplant. 88% of patients (107/122) were refractory to the last line of treatment (stable- or progressive disease (PD) or relapse within 6 months). Among 122 patients, 112 completed leukapheresis, 3 are awaiting the procedure, and 7 patients did not proceed (6 due to PD, 1 opted for radical radiotherapy). 57 of 112 patients were infused at the time of abstract submission, 42 are awaiting CAR-T infusion. 10 patients did not proceed to infusion due to disease progression and clinical deterioration (3 with CNS relapse), 2 due to manufacturing failure. One patient achieved a complete response following bridging therapy and is currently monitored. 84% (88/105) patients received bridging therapy between the time of NCCP approval and CAR-T infusion (median 64 days), 62 had chemotherapy, 9 radiotherapy, and 17 steroids only. Details on bridging therapy, treatment-related toxicities and outcomes will be provided at the meeting, by which time approximately 62 patients will have completed their 3 months PET response assessment. Conclusion NHSE has successfully implemented a national structure for providing licenced CAR-T products in England, enabling equity of access and oversight on capacity and patient outcomes, which can serve as a model for newly licenced, cost-intense and complex cell- and gene therapies in the future. The prospective and centralised nature of this dataset offers a true reflection of the real-world patient population undergoing CAR-T therapy in England. Disclosures Kuhnl: Kite Gilead: Honoraria. Roddie:Gilead: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Novartis: Consultancy. Menne:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Novartis: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Kite/Gilead: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel grant, Research Funding, Speakers Bureau; Roche: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bayer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel grant, Research Funding, Speakers Bureau; Kyowa Kirin: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel grant, Research Funding, Speakers Bureau; Daiichi Sankyo: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel grant, Research Funding, Speakers Bureau; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Astra Zeneca: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Pfizer: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel grant; Jazz: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel grant, Research Funding, Speakers Bureau; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Travel grant, Research Funding, Speakers Bureau. Sanderson:Kite/Gilead: Honoraria. Osborne:Novartis: Other: Travel; Pfizer: Honoraria, Speakers Bureau; MSD: Consultancy; Takeda: Consultancy, Honoraria, Other: Travel, Speakers Bureau; Roche: Consultancy, Honoraria, Other: Travel, Speakers Bureau; Servier: Consultancy; Gilead: Consultancy. Radford:AstraZeneca: Equity Ownership, Research Funding; Takeda: Consultancy, Honoraria, Research Funding; BMS: Consultancy, Honoraria; Novartis: Consultancy, Honoraria; ADC Therapeutics: Consultancy, Research Funding; GSK: Equity Ownership; Seattle Genetics: Consultancy, Honoraria. Patten:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Gilead: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding; Abbvie: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Consultancy, Honoraria; Roche: Honoraria, Research Funding. O'Reilly:Kite Gilead: Honoraria. Bloor:Abvie, Gilead, Novartis, Autolus, Celgene, etc: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Other: Educational grant. Rowntree:Novartis: Consultancy. Bowles:Abbvie: Research Funding; Janssen: Research Funding. Collins:Gilead: Consultancy, Honoraria. McMillan:BMS: Honoraria; Celgene: Honoraria, Speakers Bureau; F. Hoffmann-La Roche Ltd: Honoraria, Speakers Bureau; Gilead: Honoraria; Novartis: Honoraria; Sandoz: Honoraria; Pfizer: Honoraria, Research Funding; MSD: Honoraria.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2017-10-20
    Description: The stoichiometry of biological components and their influence on dissolved distributions have long been of interest in the study of the oceans. Cobalt has the smallest oceanic inventory of inorganic micronutrients and hence is particularly vulnerable to influence by internal oceanic processes including euphotic zone uptake, remineralization, and scavenging. Here we observe not only large variations in dCo : P stoichiometry but also the acceleration of those dCo : P ratios in the upper water column in response to several environmental processes. The ecological stoichiometry of total dissolved cobalt (dCo) was examined using data from a US North Atlantic GEOTRACES transect and from a zonal South Atlantic GEOTRACES-compliant transect (GA03/3_e and GAc01) by Redfieldian analysis of its statistical relationships with the macronutrient phosphate. Trends in the dissolved cobalt to phosphate (dCo : P) stoichiometric relationships were evident in the basin-scale vertical structure of cobalt, with positive dCo : P slopes in the euphotic zone and negative slopes found in the ocean interior and in coastal environments. The euphotic positive slopes were often found to accelerate towards the surface and this was interpreted as being due to the combined influence of depleted phosphate, phosphorus-sparing (conserving) mechanisms, increased alkaline phosphatase metalloenzyme production (a zinc or perhaps cobalt enzyme), and biochemical substitution of Co for depleted Zn. Consistent with this, dissolved Zn (dZn) was found to be drawn down to only 2-fold more than dCo, despite being more than 18-fold more abundant in the ocean interior. Particulate cobalt concentrations increased in abundance from the base of the euphotic zone to become  ∼  10 % of the overall cobalt inventory in the upper euphotic zone with high stoichiometric values of  ∼  400 µmol Co mol−1 P. Metaproteomic results from the Bermuda Atlantic Time-series Study (BATS) station found cyanobacterial isoforms of the alkaline phosphatase enzyme to be prevalent in the upper water column, as well as a sulfolipid biosynthesis protein indicative of P sparing. The negative dCo : P relationships in the ocean interior became increasingly vertical with depth, and were consistent with the sum of scavenging and remineralization processes (as shown by their dCo : P vector sums). Attenuation of the remineralization with depth resulted in the increasingly vertical dCo : P relationships. Analysis of particulate Co with particulate Mn and particulate phosphate also showed positive linear relationships below the euphotic zone, consistent with the presence and increased relative influence of Mn oxide particles involved in scavenging. Visualization of dCo : P slopes across an ocean section revealed hotspots of scavenging and remineralization, such as at the hydrothermal vents and below the oxygen minimum zone (OMZ) region, respectively, while that of an estimate of Co* illustrated stoichiometrically depleted values in the mesopelagic and deep ocean due to scavenging. This study provides insights into the coupling between the dissolved and particulate phase that ultimately creates Redfield stoichiometric ratios, demonstrating that the coupling is not an instantaneous process and is influenced by the element inventory and rate of exchange between phases. Cobalt's small water column inventory and the influence of external factors on its biotic stoichiometry can erode its limited inertia and result in an acceleration of the dissolved stoichiometry towards that of the particulate phase in the upper euphotic zone. As human use of cobalt grows exponentially with widespread adoption of lithium ion batteries, there is a potential to affect the limited biogeochemical inertia of cobalt and its resultant ecology in the oceanic euphotic zone.
    Print ISSN: 1726-4170
    Electronic ISSN: 1726-4189
    Topics: Biology , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2005-01-01
    Print ISSN: 0025-326X
    Electronic ISSN: 1879-3363
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-04-13
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...