ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Polymer and Materials Science  (32)
  • Analytical Chemistry and Spectroscopy  (20)
  • AERODYNAMICS  (11)
  • Lunar and Planetary Science and Exploration
  • 1970-1974  (63)
Collection
Keywords
Publisher
Years
Year
  • 1
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Polytetrafluoroethylene surfaces have been treated to reduce thrombogenicity in order to make them suitable for use in prosthetic devices that come in contact with blood. This was done by first etching the surface with potassium in liquid ammonia to produce double bonds and then using these double bonds as sites for grafting on polyacids or as sites for chemical reactions. Tubes so treated were tested for thrombo-genetic activity by implantation in the thoracic aorta or inferior vena cava of dogs. These tests showed that the thrombogenicity of a polytetrafluoroethylene surface can be reduced by attaching negatively charged groups provided the surface concentration of these groups is not too high (order of 1-2 × 10-6 equivalent per cm2 geometric area) and provided the distribution of these groups is uniform. Sulfonic acid groups obtained by chlorosulfonation and carboxyl groups attached by grafting tert-butyl crotonate and hydrolyzing to crotonic acid were effective. Long chains of poly(acrylic acid), poly-(ethylenesulfonic acid), and poly(vinyl alcohol) sulfate were less effective.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Journal of Polymer Science Part A-2: Polymer Physics 10 (1972), S. 1415-1445 
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: A reaction rate model of fracture in polymer fibers is described. This model assumes that bond rupture is governed by absolute reaction rate theory with a stress-aided activation energy. It is demonstrated that the key in obtaining good agreement between the model and experiment lies in taking proper account of the variation of stress on the tie-chain molecules. The more taut chains rupture first, and the load is redistributed among the remaining unruptured tie chains. The effect of varying the temperature both in the model and in experiments on fracture in fibers is explored. Good agreement between predictions of the model and experiment is possible only with an undeterstanding of the distribution in stress on the tie chains. The distribution in stress on the chains was experimentally determined by monitoring the kinetics of bond rupture with electron paramagnetic resonance (EPR) spectroscopy. Temperature is found to have two effects on macroscopic strength. (1) The thermal energy aids the atomic stress in breaking the atomic bonds; as a consequence the rate of bond rupture of a family of bonds under a given molecular stress is increased. In this respect temperature might be viewed as decreasing the “strength” of a bond. (2) Temperature also serves to “loosen” the molecular structure and in this way modify the distribution in stress on the tie chains. To explain bond rupture and macroscopic fracture behavior quantitatively, account must be taken of both effects.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0449-2978
    Keywords: Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Electron paramagnetic resonance (EPR) spectroscopy was used to compute the surface bond rupture density in polyurethane and to determine the phase experiencing fracture in styrene-butadiene block copolymers when these elastomers are subjected to mechanical degradation by grinding. The polyurethane grinding was done at temperatures above and below the glass transition Tg; 0.155 × 1013 radicals/cm2 of fracture surface area were formed above the Tg and 4.42 × 1013 radicals/cm2 for grinding below the Tg. These values are essentially equal to those found earlier for spherulitic polymers. In all cases the fracture appears able to progress along preferential paths so as to rupture significantly fewer molecular chains than one would expect on the basis of calculations of the number of chains passing through each square centimeter of cross section. Comparison of EPR spectra formed by grinding styrene-butadiene copolymer with those of styrene and butadiene above indicated that at cryogenic temperature, the fracture in the copolymer takes place in the butadiene phase.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 13 (1974), S. 2037-2060 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Bacterial cell wall peptidoglycans are built from unbranched β-(1 → 4)-linked glycan chains composed of alternately repeating units of N-acetylglucosamine and N-acetylmuramic acid residues, with peptide side chains attached to the muramic acid residues. The glycan chains are interconnected by peptide bonds formed between the peptide side chains. Through the use of three-dimensional molecular models, two configurations of the glycan strands and the peptide side chains are described, which by their constancy of form reflect the fundamental constancies of the covalent structures. Each of these two models will accommodate any chemical modification that has been observed in bacteria without change in the configuration of the peptide backbone. Some alterations in the chemical structure, which have been sought in bacteria, but not found, would not be tolerated by the models. In these models, glycan strands are parallel, with their lengths and widths predominantly in the plane of the cell wall. The cross-bridging portions of the peptide side chains are at right angles to the glycan strand, in a separate, parallel plane. A compact model is presented in which the peptide side chain is closely appressed to the glycan strand and is stabilized by three hydrogen bonds per disaccharide-peptide subunit. In a second model, the peptide side chain is raised away from the glycan strand in an entirely extended configuration. The compact and extended forms are interconvertible. The thickness of a sheet of peptidoglycan would be from 10.6 to 11.1 Å for the compact model, and 19.1 Å for the extended model.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Makromolekulare Chemie 13 (1970), S. 97-107 
    ISSN: 0003-3146
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Description / Table of Contents: The photooxidative degradation of poly(ethyleneglycol terephthalate) fibres in initiated by the formation of free radicals and peroxidation reactions. These produce partial and mutual oxidation products from the glycol component of the polymer in addition to acetaldehyde. During this process the terephthalate residues undergo hydroxylation to form mono- and 2.5-dihydroxyterephthalic acid. Such residues cause a special fluorescence characteristic for light damaged polyester fibres.
    Notes: Der phoooxidative Abbau von Polyäthylenglykolterephthalat-Fasern erfolgt radikalisch über Peroxygenierungsreaktione. Die Glykolkomponente wird in 1- und 2-Stellung oxidiert, zudem entsteht noch Acetaldehyd. Als Oxidationsprodukte der Terephthalsäure wurden Mono- und 2,5-Dihydroxyterephthalsäure isoliert, die auch für die Fluoreszenz in belichtetem Material verantwortlich sind.
    Additional Material: 1 Tab.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 14 (1970), S. 1121-1126 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Complementing an earlier paper which utilized an energy balance criterion for a continuum mechanics analysis of adhesive failure in a pressurized blister at the interface of an elastic material and a rigid substrate, the analysis is extended to include an additional elastic interlayer between them. An infinite lateral-length elastic plate strip bonded through a Winkler elastic foundation to a rigid substrate is assumed, in which the plate is separated from the adhesive layer by internal pressure. It is found that the important design parameters are the tensile modulus-to-thickness ratio of the adhesive layer and the adhesive fracture energy of separation of the respective materials. The results provide a basis for investigating changes in the chemical microstructure of the adhesive.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 14 (1970), S. 73-78 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: A series of interpenetrating polymer networks were prepared containing PMMA and PEA as their two components. Corresponding telomer mixtures and random copolymers were also prepared for comparison purposes. The glass-rubber transition studies were made via shear modulus and dilatometric measurements. The results indicate one very broad transition for the IPN's rather than two transitions expected for incompatible polymer pairs. An interpretation based on the compatibility or near-compatibility of the PEA/PMMA pair is offered.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 14 (1970), S. 735-745 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The time-temperature dependence of the cohesive fracture energy is deduced from experiments on a centrally cracked sheet of butadiene-acrylonitrile-acrylic acid viscoelastic terpolymer crosslinked with an epoxy curing agent. Analytic results based upon a cylindrical flaw model of the crack permit the segregation of the fracture energy time dependence from that of the relaxation modulus.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 14 (1970), S. 3049-3063 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Rate of molecular bond rupture is successfully correlated by a Griffith-type energy balance to the strain energy release rate during ozone cracking of rubber. Rate of bond rupture is determined from electron paramagnetic resonance (EPR) measurements. The rate of strain energy release is determined from stress-elongation measurements during stress relaxation, creep, and cyclic loading tests. To compare with macroscopic crack studies, it was assumed that each ruptured bond created a given amount of fracture surface. Numerical agreement could be obtained by assuming each broken bond results in the production of an area of approximately 10-13 cm2. Using the surface energy density determined from stress relaxation tests in an energy balance gives surprisingly accurate predictions of expected behavior in creep and cyclic loading tests. There is a one-to-one correspondence between the rate of crack growth (bond rupture) and rate of energy release from strain and external work in all cases. It is proposed that such correlations give credence to a Griffith-type approach to environmental cracking which it did not have previously.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 16 (1972), S. 1377-1386 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The molecular bond rupture rate during ozone attack of torsionally loaded rubber was determined from electron paramagnetic resonance (EPR) measurements. The rupture rate was successfully correlated by a Griffith-type energy balance to the strain-energy release rate in the samples. These observations substantiate the results from a similar study on tensile loading previously reported. In both cases there is a one-to-one correspondence between the rate of bond rupture (or crack growth) and the rate of energy release from the strain field and external work. A fracture energy, γn, of approximately 5×10-12 (±20%) ergs per free radical formed during the cracking was experimentally determined.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...