ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cell Line  (120)
  • American Association for the Advancement of Science (AAAS)  (120)
  • American Chemical Society
  • American Chemical Society (ACS)
  • Springer
  • Wiley-Blackwell
  • 1990-1994  (120)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (120)
  • American Chemical Society
  • American Chemical Society (ACS)
  • Springer
  • Wiley-Blackwell
Years
Year
  • 1
    Publication Date: 1990-04-13
    Description: Phosphate-methylated DNA hybridizes strongly and specifically to natural DNA and RNA. Hybridization to single-stranded and double-stranded DNA leads to site-selective blocking of replication and transcription. Phosphate-methylated DNA was used to interrupt the life cycle of the human immunodeficiency virus type-1 (HIV-1), the causative agent of acquired immunodeficiency syndrome (AIDS). Both antisense and sense phosphate-methylated DNA 20-nucleotide oligomers, targeted at the transactivator responsive region and the primer binding site, caused complete inhibition of viral infectivity at a low concentration. Hybridization of phosphate-methylated DNA with folded and unfolded RNA was studied by ultraviolet and proton nuclear magnetic resonance spectroscopy. The combined results of hybridization studies and biological experiments suggest that the design of effective antisense phosphate-methylated DNA should focus on hairpin loop structures in the viral RNA. For sense systems, the 5' end of the integrated viral genome is considered to be the important target site.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Buck, H M -- Koole, L H -- van Genderen, M H -- Smit, L -- Geelen, J L -- Jurriaans, S -- Goudsmit, J -- New York, N.Y. -- Science. 1990 Apr 13;248(4952):208-12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Organic Chemistry, Eindhoven University of Technology, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2326635" target="_blank"〉PubMed〈/a〉
    Keywords: Anticodon/genetics ; Base Composition ; Base Sequence ; Cell Line ; Codon/genetics ; *DNA Probes/metabolism ; DNA, Viral/biosynthesis ; HIV-1/*genetics/pathogenicity ; Hydrogen Bonding ; Indicators and Reagents ; Methylation ; Models, Structural ; Molecular Sequence Data ; Nucleic Acid Conformation ; Nucleic Acid Hybridization ; Organophosphorus Compounds/metabolism ; RNA, Viral/*genetics ; Thermodynamics ; Virulence/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1990-12-21
    Description: The progesterone receptor (PR) in the chicken oviduct is a phosphoprotein that regulates gene transcription in the presence of progesterone. Treatment with progesterone in vivo stimulates phosphorylation of the progesterone receptor. With transient transfection assays, the present work has tested whether phosphorylation participates in the regulation of PR-mediated transcription. Treatment with 8-bromo-cyclic adenosine monophosphate (8-Br cAMP), a stimulator of cAMP-dependent protein kinase [protein kinase A (PKA)], mimicked progesterone-dependent, receptor-mediated transcription in the absence of progesterone. Inhibition of PKA blocked hormone action. Treatment with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, stimulated transcription in a manner similar to that of progesterone. These observations suggest that phosphorylation of the PR or other proteins in the transcription complex can modulate PR-mediated transcription in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Denner, L A -- Weigel, N L -- Maxwell, B L -- Schrader, W T -- O'Malley, B W -- HD-07857/HD/NICHD NIH HHS/ -- HD-22061/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 1990 Dec 21;250(4988):1740-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2176746" target="_blank"〉PubMed〈/a〉
    Keywords: 8-Bromo Cyclic Adenosine Monophosphate/pharmacology ; Animals ; Cell Line ; Chickens ; Female ; Gene Expression Regulation ; Kinetics ; Oviducts/metabolism ; Phosphoprotein Phosphatases/antagonists & inhibitors ; Phosphorylation ; Progesterone/*pharmacology ; Receptors, Progesterone/*metabolism ; *Transcription, Genetic/drug effects ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-06-25
    Description: To acquire transforming potential, the precursor of the Ras oncoprotein must undergo farnesylation of the cysteine residue located in a carboxyl-terminal tetrapeptide. Inhibitors of the enzyme that catalyzes this modification, farnesyl protein transferase (FPTase), have therefore been suggested as anticancer agents for tumors in which Ras contributes to transformation. The tetrapeptide analog L-731,735 is a potent and selective inhibitor of FPTase in vitro. A prodrug of this compound, L-731,734, inhibited Ras processing in cells transformed with v-ras. L-731,734 decreased the ability of v-ras-transformed cells to form colonies in soft agar but had no effect on the efficiency of colony formation of cells transformed by either the v-raf or v-mos oncogenes. The results demonstrate selective inhibition of ras-dependent cell transformation with a synthetic organic inhibitor of FPTase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kohl, N E -- Mosser, S D -- deSolms, S J -- Giuliani, E A -- Pompliano, D L -- Graham, S L -- Smith, R L -- Scolnick, E M -- Oliff, A -- Gibbs, J B -- New York, N.Y. -- Science. 1993 Jun 25;260(5116):1934-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cancer Research, Merck Research Laboratories, West Point, PA 19486.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8316833" target="_blank"〉PubMed〈/a〉
    Keywords: *Alkyl and Aryl Transferases ; Animals ; Antineoplastic Agents/chemistry/*pharmacology ; Cell Division/drug effects ; Cell Line ; Cell Transformation, Neoplastic/*drug effects ; Dipeptides/chemistry/*pharmacology ; Drug Design ; Farnesyltranstransferase ; *Genes, ras ; Oncogene Proteins/*metabolism ; Protein Prenylation/*drug effects ; Rats ; Transferases/*antagonists & inhibitors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1993-07-16
    Description: Nerve growth factor (NGF) binding to cellular receptors is required for the survival of some neural cells. In contrast to TrkA, the high-affinity NGF receptor that transduces NGF signals for survival and differentiation, the function of the low-affinity NGF receptor, p75NGFR, remains uncertain. Expression of p75NGFR induced neural cell death constitutively when p75NGFR was unbound; binding by NGF or monoclonal antibody, however, inhibited cell death induced by p75NGFR. Thus, expression of p75NGFR may explain the dependence of some neural cells on NGF for survival. These findings also suggest that p75NGFR has some functional similarities to other members of a superfamily of receptors that include tumor necrosis factor receptors, Fas (Apo-1), and CD40.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rabizadeh, S -- Oh, J -- Zhong, L T -- Yang, J -- Bitler, C M -- Butcher, L L -- Bredesen, D E -- AG10671/AG/NIA NIH HHS/ -- NS10928/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1993 Jul 16;261(5119):345-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of California, Los Angeles 90024.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8332899" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Apoptosis/drug effects ; Cell Line ; Cell Survival/drug effects ; Culture Media, Serum-Free ; Nerve Growth Factors/*metabolism/pharmacology ; Neurons/*cytology/drug effects/metabolism ; PC12 Cells ; Receptors, Nerve Growth Factor/metabolism/*physiology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1992-06-05
    Description: The phagocyte respiratory burst oxidase is a flavin-adenine dinucleotide (FAD)-dependent dehydrogenase and an electron transferase that reduces molecular oxygen to superoxide anion, a precursor of microbicidal oxidants. Several proteins required for assembly of the oxidase have been characterized, but the identity of its flavin-binding component has been unclear. Oxidase activity was reconstituted in vitro with only the purified oxidase proteins p47phox, p67phox, Rac-related guanine nucleotide (GTP)-binding proteins, and membrane-bound cytochrome b558. The reconstituted oxidase required added FAD, and FAD binding was localized to cytochrome b558. Alignment of the amino acid sequence of the beta subunit of cytochrome b558 (gp91phox) with other flavoproteins revealed similarities to the nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-binding domains. Thus flavocytochrome b558 is the only obligate electron transporting component of the NADPH oxidase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rotrosen, D -- Yeung, C L -- Leto, T L -- Malech, H L -- Kwong, C H -- New York, N.Y. -- Science. 1992 Jun 5;256(5062):1459-62.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1318579" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Cell Line ; Cell-Free System ; Cytochrome b Group/*blood/genetics/isolation & purification ; Ferredoxin-NADP Reductase/genetics/metabolism ; Humans ; Insects ; Molecular Sequence Data ; NADH, NADPH Oxidoreductases/*blood/genetics/isolation & purification ; NADP/metabolism ; NADPH Oxidase ; Neutrophils/*enzymology ; Phagocytes/*enzymology ; Plants/enzymology ; Recombinant Proteins/chemistry/metabolism ; Sequence Homology, Nucleic Acid ; Superoxides/blood ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-08-10
    Description: The stimulation of phospholipase A2 by thrombin and type 2 (P2)-purinergic receptor agonists in Chinese hamster ovary cells is mediated by the G protein Gi. To delineate alpha chain regulatory regions responsible for control of phospholipase A2, chimeric cDNAs were constructed in which different lengths of the alpha subunit of Gs (alpha s) were replaced with the corresponding sequence of the Gi alpha subunit (alpha i2). When a carboxyl-terminal chimera alpha s-i(38), which has the last 38 amino acids of alpha s substituted with the last 36 residues of alpha i2, was expressed in Chinese hamster ovary cells, the receptor-stimulated phospholipase A2 activity was inhibited, although the chimera could still activate adenylyl cyclase. Thus, alpha s-i(38) is an active alpha s, but also a dominant negative alpha i molecule, indicating that the last 36 amino acids of alpha i2 are a critical domain for G protein regulation of phospholipase A2 activity.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gupta, S K -- Diez, E -- Heasley, L E -- Osawa, S -- Johnson, G L -- DK37871/DK/NIDDK NIH HHS/ -- GM30324/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 10;249(4969):662-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, National Jewish Center for Immunology and Respiratory Medicine, Denver, CO 80206.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2166341" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Triphosphate/pharmacology ; Animals ; Arachidonic Acid ; Arachidonic Acids/metabolism ; Cell Line ; Chlorides/pharmacology ; Enzyme Activation ; GTP-Binding Proteins/*genetics/metabolism ; Inositol Phosphates/metabolism ; Kinetics ; Lithium/pharmacology ; Lithium Chloride ; Macromolecular Substances ; *Mutation ; Phospholipases/*metabolism ; Phospholipases A/*metabolism ; Phospholipases A2 ; Receptors, Purinergic/drug effects/*physiology ; Restriction Mapping ; Thrombin/antagonists & inhibitors/*pharmacology ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-08-24
    Description: Soluble antigens (Ags) in the extracellular fluids are excluded from the class I major histocompatibility complex (MHC)-restricted pathway of Ag presentation in most cells. However, an exogenous Ag can be internalized, processed, and presented in association with class I MHC molecules on specialized Ag-presenting cells (APCs). These APCs express class II molecules and can simultaneously present exogenous Ags to both class I and class II MHC-restricted T cells. These APCs may be important participants in the regulation of host immune responses. This APC activity may explain several phenomena of cytotoxic T lymphocyte (CTL) priming in vivo and might be exploited for eliciting CTL responses to protein vaccines.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rock, K L -- Gamble, S -- Rothstein, L -- AI-20248/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1990 Aug 24;249(4971):918-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Harvard Medical School, Boston, MA 02115.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2392683" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigen-Presenting Cells/*immunology ; Azides/pharmacology ; Cell Line ; Histocompatibility Antigens Class I/*immunology ; Histocompatibility Antigens Class II/immunology ; Mice ; Mice, Inbred C57BL ; Ovalbumin/*immunology ; Spleen/immunology ; T-Lymphocytes/drug effects/immunology ; T-Lymphocytes, Cytotoxic/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1990-11-02
    Description: The function of the c-myc gene and its role in tumorigenesis are poorly understood. In order to elucidate the role of c-myc oncogene activation in B cell malignancy, the phenotypic changes caused by the expression of c-myc oncogenes in human B lymphoblastoid cells immortalized by Epstein-Barr virus were analyzed. C-myc oncogenes caused the down-regulation of lymphocyte function-associated antigen-1 (LFA-1) adhesion molecules (alpha L/beta 2 integrin) and loss of homotypic B cell adhesion in vitro. Down-regulation of LFA-1 occurred by (i) posttranscriptional modulation of LFA-1 alpha L-chain RNA soon after acute c-myc induction, and (ii) transcriptional modulation in cells that chronically express c-myc oncogenes. Analogous reductions in LFA-1 expression were detectable in Burkitt lymphoma cells carrying activated c-myc oncogenes. Since LFA-1 is involved in B cell adhesion to cytotoxic T cells, natural killer cells, and vascular endothelium, these results imply functions for c-myc in normal B cell development and lymphomagenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Inghirami, G -- Grignani, F -- Sternas, L -- Lombardi, L -- Knowles, D M -- Dalla-Favera, R -- CA 37165/CA/NCI NIH HHS/ -- CA 37295/CA/NCI NIH HHS/ -- CA 48236/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Nov 2;250(4981):682-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, College of Physicians and Surgeons, Columbia University, New York, NY 10032.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2237417" target="_blank"〉PubMed〈/a〉
    Keywords: B-Lymphocytes/*immunology ; Cell Line ; Cell Transformation, Neoplastic ; Down-Regulation ; Humans ; Lymphocyte Function-Associated Antigen-1/*analysis/genetics/physiology ; Plasminogen Inactivators ; Proto-Oncogene Proteins c-myc/*genetics ; *Proto-Oncogenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1990-05-25
    Description: A subline of U937 cells (U937D) was obtained in which creatine kinase B (CK-B) messenger RNA was present and bound to ribosomes, but CK activity was undetectable. Transformation of U937D cells with retrovirus vectors that contain the 3' untranslated region (3' UTR) of CK-B messenger RNA exhibited CK activity with no change in abundance of CK-B mRNA. The 3' UTR formed a complex in vitro with a component of S100 extracts from wild-type cells. This binding activity was not detectable in S100 extracts from cells that expressed CK activity after transformation with the 3' UTR-containing vector. These results suggest that translation of CK-B is repressed by binding of a soluble factor or factors to the 3' UTR.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ch'ng, J L -- Shoemaker, D L -- Schimmel, P -- Holmes, E W -- GM34366/GM/NIGMS NIH HHS/ -- R01-CA 47631-02/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1990 May 25;248(4958):1003-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Duke University, Durham, NC 27710.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2343304" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Line ; Cloning, Molecular ; Creatine Kinase/*genetics ; *Gene Expression Regulation ; Humans ; Hypoxanthine Phosphoribosyltransferase/genetics ; Polyribosomes/metabolism ; *Protein Biosynthesis ; RNA, Messenger/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1991-04-26
    Description: The trk proto-oncogene encodes a 140-kilodalton, membrane-spanning protein tyrosine kinase (p140prototrk) that is expressed only in neural tissues. Nerve growth factor (NGF) stimulates phosphorylation of p140prototrk in neural cell lines and in embryonic dorsal root ganglia. Affinity cross-linking and equilibrium binding experiments with 125I-labeled NGF indicate that p140prototrk binds NGF specifically in cultured cells with a dissociation constant of 10(-9) molar. The identification of p140prototrk as an NGF receptor indicates that this protein participates in the primary signal transduction mechanism of NGF.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaplan, D R -- Hempstead, B L -- Martin-Zanca, D -- Chao, M V -- Parada, L F -- N01-CO-74101/CO/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 Apr 26;252(5005):554-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Eukaryotic Signal Transduction Group, National Cancer Institute-Frederick Cancer Research and Development Center, MD 21702.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1850549" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Line ; Cell Membrane/physiology ; Cross-Linking Reagents ; Embryo, Mammalian ; Ganglia, Spinal/*metabolism ; Humans ; Kinetics ; Mice ; Nerve Growth Factors/metabolism/*physiology ; Neuroblastoma ; Protein-Tyrosine Kinases/*metabolism ; Proto-Oncogene Proteins/*metabolism ; *Proto-Oncogenes ; Receptor, trkA ; Receptors, Cell Surface/metabolism/*physiology ; Receptors, Nerve Growth Factor ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...