ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (10,775)
  • 1990-1994  (5,795)
  • 1980-1984  (4,071)
  • 1935-1939  (909)
  • Process Engineering, Biotechnology, Nutrition Technology  (10,775)
Collection
  • Articles  (10,775)
Years
Year
Journal
  • 1
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract All strains of Comamonas testosteroni investigated here, produced quinohaemoprotein ethanol dehydrogenase (QH-EDH) when grown on ethanol or butanol, but one strain of C. acidovorans and of C. terrigena did not. Hybridization experiments showed that the gene for QH-EDH is absent in the latter two strains. Induction and properties of the QH-EDHs seem to be similar: all C. testosteroni strains produced the enzyme in its apo-form [without pyrroloquinoline quinone (PQQ)] and the levels were higher at growth at low temperature; preference for the R-enentiomer and similar selectivity was shown in the oxidation of solketal (2,2-dimethyl-1,3-dioxolane-4-methanol) by cells (supplemented with PQQ); the fragment of the qhedh gene gave high hybridization with the DNA of the C. testosteroni strains. Experiments with C. testosteroni LMD 26.36 revealed that the organism is well suited for production of (S)-solketal: it shows an adequate enantioselectivity (E value of 49) for the oxidation of racemic solketal; the conversion rate of (R)-solketal is only 3.5 times lower than that of ethanol; the optimal pH for conversion (7.6) is in a region where solketal has sufficient chemical stability; separation of the remaining (S)-solketal from the acid formed is simple; induction of QH-EDH, the sole enzyme responsible for the oxidation of (R)-solketal, occurs during growth on ethanol or butanol so that the presence of solketal (inhibitory for growth) is not required; production of active cells and the conversion step can be integrated into one process, provided that PQQ and solketal addition occur at the appropriate moment; the conversion seems environmentally feasible. However, since high concentrations of solketal inhibit respiration via QH-EDH, further investigations on the mechanism of inhibition and the stability of the enzyme might be rewarding as it could lead to application of higher substrate concentrations with consequently lower down-stream processing costs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract All strains of Comamonas testosteroni investigated here, produced quinohaemoprotein ethanol dehydrogenase (QH-EDH) when grown on ethanol or butanol, but one strain of C. acidovorans and of C. terrigena did not. Hybridization experiments showed that the gene for QH-EDH is absent in the latter two strains. Induction and properties of the QH-EDHs seem to be similar: all C. testosteroni strains produced the enzyme in its apo-form [without pyrroloquinoline quinone (PQQ)] and the levels were higher at growth at low temperature; preference for the R–enantiomer and similar selectivity was shown in the oxidation of solketal (2,2-dimethyl-1,3-dioxolane-4-methanol) by cells (supplemented with PQQ); the fragment of the qhedh gene gave high hybridization with the DNA of the C. testosteroni strains. Experiments with C. testosteroni LMD 26.36 revealed that the organism is well suited for production of (S)-solketal: it shows an adequate enantioselectivity (E value of 49) for the oxidation of racemic solketal; the conversion rate of (R)-solketal is only 3.5 times lower than that of ethanol; the optimal pH for conversion (7.6) is in a region where solketal has sufficient chemical stability; separation of the remaining (S)-solketal from the acid formed is simple; induction of QH-EDH, the sole enzyme responsible for the oxidation of (R)-solketal, occurs during growth on ethanol or butanol so that the presence of solketal (inhibitory for growth) is not required; production of active cells and the conversion step can be integrated into one process, provided that PQQ and solketal addition occur at the appropriate moment; the conversion seems environmentally feasible. However, since high concentrations of solketal inhibit respiration via QH-EDH, further investigations on the mechanism of inhibition and the stability of the enzyme might be rewarding as it could lead to application of higher substrate concentrations with consequently lower downstream processing costs.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The time-temperature relationships for the inactivation of purified enterotoxin prepared from Clostridium perfringens were determined by Vero cell assay in two different heating menstrua. Enterotoxin diluted to an initial concentration of 12.5 μg/g in chicken gravy and in 0.1M phosphate buffer both at pH 6.1 was heated at temperatures of 59–65°C. Average inactivation times in gravy ranged from 72.8–1.5 min and in buffer from 149.4–2.4 min.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] We have developed the yeast Kluyveromyces lactis as a host organism for the production of the milk-clotting enzyme chymosin. In contrast to Saccharomyces cerevisiae, we found that this yeast is capable of the synthesis and secretion of fully active prochymosin. Various signal sequences could be ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1546-1696
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: [Auszug] A DNA vector for expressing an oxygen-binding heme protein (Vitreoscilla hemoglobin, or VHb) in filamentous fungi was constructed and introduced into a cephalosporin C-producing strain of Acremonium chrysogenum. Expression of VHb in transformants was demonstrated by Western immunoblot analysis and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Favourable reaction conditions for the enzymatic production of 1-kestose by sucrose-1F-fructosyltransferase, SFT (EC 2.4.1.99) from Aspergillus phoenicis CBS 294.80 mycelium were established. The intracellular enzyme SFT works best at 60°C, exhibits a relatively high thermostability and possesses an alkaline pH optimum. An invertase also present in the mycelium of A. phoenicis possesses an acidic pH optimum. Consequently, around pH 8.0 sucrose is converted mainly to 1-kestose and nystose while fructose is only formed in relatively small amounts. Under optimal conditions (55° C, pH 8.0 and an initial sucrose concentration of 750 g 1-1) a yield of about 300 g 1-kestose per 1.01 reaction mixture could be achieved after 8 h.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Cell-free extracts of L-arabinose- and d-xylose-grown cells of the mesophilic anaerobic bacterium Bacteroides xylanolyticus X5-1 contained high activities [2 units (U)/mg] of an α-l-arabinofuranosidase (EC 3.2.1.55). The enzyme was also produced during growth on xylan, but not during growth on glucose or cellobiose. The enzyme was mainly extracellularly attached to the cell when the organism was grown on xylan and was not released into the medium. The enzyme was purified 41-fold to apparent homogeneity. The native enzyme had an apparent molecular mass of 364 kDa and was composed of six polypeptide subunits of 61 kDa. The enzyme displayed a pH optimum of 5.5–6.0, and a pH stability of 5.5–9.0. The temperature optimum was 50° C and the enzyme was stable up to 50° C. Thiol groups were essential for activity, but the enzyme activity was not dependent on divalent cations. The Michaelisconstant (Km) and maximal reaction velocity (Vmax) for p-nitrophenyl-α-l-arabinofuranoside were 0.5 mm and 155 U/mg protein, respectively. The enzyme was specific for the α-linked arabinoside in the furanoside configuration. The enzyme displayed activity with arabinose-containing xylo-oligosaccharides with a polymerization degree of 2–5, but not with the polymeric substrates oat-spelt xylan or arabinogalactan. The enzyme belongs to the Streptomyces purpurascens-type of α-l-arabinofuranosidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 34 (1990), S. 225-228 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary The benzoate metabolism of Aspergillus niger was studied as part of a design to clone the benzoate-4-hydroxylase gene of this fungus on the basis of complementation. Filtration enrichment techniques yielded mutants defective for different steps of benzoate degradation: bph (benzoate-4-hydroxylase), phh (4-hydroxybenzoate-3-hydroxylase) and prc (protocatechuate ring cleavage) mutants. In this way the degradation pathway for benzoate, involving the formation of 4-hydroxybenzoate and 3,4-dihydroxybenzoate has been confirmed. In addition a mutant sensitive to benzoate has been found. Complementation tests in somatic diploids showed that the bph mutants belonged to two complementation groups. The major group is probably defective in the structural gene (bphA). All phh mutants tested belonged to one complementation group. The prc mutants could be divided into several groups on the basis of their growth on different aromatic substrates and on the basis of the complementation test. The phh and both bph mutations are shown to be located on different chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Cell-free extracts of L-arabinose- and d-xylose-grown cells of the mesophilic anaerobic bacterium Bacteroides xylanolyticus X5-1 contained high activities [2 units ((U)/mg] of an α-l-arabinofuranosidase (EC 3.2.1.55). The enzyme was also produced during growth on xylan, but not during growth on glucose or cellobiose. The enzyme was mainly extracellularly attached to the cell when the organism was grown on xylan and was not released into the medium. The enzyme was purified 41-fold to apparent homogeneity. The native enzyme had an apparent molecular mass of 364 kDa and was composed of six polypeptide subunits of 61 kDa. The enzyme displayed a pH optimum of 5.5 – 6.0, and a pH stability of 5.5 – 9.0. The temperature optimum was 50°  C and the enzyme was stable up to 50°  C. Thiol groups were essential for activity, but the enzyme activity was not dependent on divalent cations. The Michaelisconstant (Km) and maximal reaction velocity (Vmax) for p-nitrophenyl-α-l-arabinofuranoside were 0.5 mm and 155 U/mg protein, respectively. The enzyme was specific for the α-linked arabinoside in the furanoside configuration. The enzyme displayed activity with arabinose-containing xylo-oligosaccharides with a polymerization degree of 2 – 5, but not with the polymeric substrates oat-spelt xylan or arabinogalactan. The enzyme belongs to the Streptomyces purpurascens-type of α-l-arabinofuranosidase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...