ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd
    Sedimentology 46 (1999), S. 0 
    ISSN: 1365-3091
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: The behaviour of subaerial particle-laden gravity currents (e.g. pyroclastic flows, lahars, debris flows, sediment-bearing floods and jökulhlaups) flowing into the sea has been simulated with analogue experiments. Flows of either saline solution, simple suspensions of silicon carbide (SiC) in water or complex suspensions of SiC and plastic particles in methanol were released down a slope into a tank of water. The excess momentum between subaerial and subaqueous flow is dissipated by a surface wave. At relatively low density contrasts between the tank water and the saline or simple suspensions, the flow mixture enters the water and forms a turbulent cloud involving extensive entrainment of water. The cloud then collapses gravitationally to form an underwater gravity current, which progresses along the tank floor. At higher density contrasts, the subaerial flow develops directly into a subaqueous flow. The flow slows and thickens in response to the reduced density contrast, which is driving motion, and then continues in the typical gravity current manner. Complex suspensions become dense flows along the tank floor or buoyant flows along the water surface, if the mixtures are sufficiently denser or lighter than water respectively. Flows of initially intermediate density are strongly influenced by the internal stratification of the subaerial flow. Material from the particulate-depleted upper sections of the subaerial flow becomes a buoyant gravity current along the water surface, whereas material from the particulate-enriched lower sections forms a dense flow along the tank floor. Sedimentation from the dense flow results in a reduction in bulk density until the mixture attains buoyancy, lifts off and becomes a secondary buoyant flow along the water surface. Jökulhlaups, lahars and debris flows are typically much denser than seawater and, thus, will usually form dense flows along the seabed. After sufficient sedimentation, the freshwater particulate mixture can lift off to form a buoyant flow at the sea surface, leading to a decoupling of the fine and coarse particles. Flood waters with low particulate concentrations (〈2%) may form buoyant flows immediately upon entering the ocean. Subaerial pyroclastic flows develop a pronounced internal stratification during subaerial run-out and, thus, a flow-splitting behaviour is probable, which agrees with evidence for sea surface and underwater flows from historic eruptions of Krakatau and Mont Pelée. A pyroclastic flow with a bulk density closer to that of sea water may form a turbulent cloud, resulting in the deposition of much of the pyroclasts close to the shore. Dense subaqueous pyroclastic flows will eventually lift off and form secondary buoyant flows, either before or after the transformation to a water-supported nature.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-0819
    Keywords: Key words Lascar Volcano ; Lava domes ; Degassing ; Explosive eruptions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Lascar Volcano (5592 m; 23°22'S, 67°44'W) entered a new period of vigorous activity in 1984, culminating in a major explosive eruption in April 1993. Activity since 1984 has been characterised by cyclic behaviour with recognition of four cycles up to the end of 1993. In each cycle a lava dome is extruded in the active crater, accompanied by vigorous degassing through high-temperature, high-velocity fumaroles distributed on and around the dome. The fumaroles are the source of a sustained steam plume above the volcano. The dome then subsides back into the conduit. During the subsidence phase the velocity and gas output of the fumaroles decrease, and the cycle is completed by violent explosive activity. Subsidence of both the dome and the crater floor is accommodated by movement on concentric, cylindrical or inward-dipping conical fractures. The observations are consistent with a model in which gas loss from the dome is progressively inhibited during a cycle and gas pressure increases within and below the lava dome, triggering a large explosive eruption. Factors that can lead to a decrease in gas loss include a decrease in magma permeability by foam collapse, reduction in permeability due to precipitation of hydrothermal minerals in the pores and fractures within the dome and in country rock surrounding the conduit, and closure of open fractures during subsidence of the dome and crater floor. Dome subsidence may be a consequence of reduction in magma porosity (foam collapse) as degassing occurs and pressurisation develops as the permeability of the dome and conduit system decreases. Superimposed upon this activity are small explosive events of shallow origin. These we interpret as subsidence events on the concentric fractures leading to short-term pressure increases just below the crater floor.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0819
    Keywords: Key words Rhyolite ; Volatiles ; Vent ; Eruption transitions ; Shear ; Permeable ; Tuffisite
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  The structures and textures of the rhyolite in the Mule Creek vent (New Mexico, USA) indicate mechanisms by which volatiles escape from silicic magma during eruption. The vent outcrop is a 300-m-high canyon wall comprising a section through the top of a feeder conduit, vent and the base of an extrusive lava dome. Field relations show that eruption began with an explosive phase and ended with lava extrusion. Analyses of glass inclusions in quartz phenocrysts from the lava indicate that the magma had a pre-eruptive dissolved water content of 2.5–3.0 wt% and, during eruption, the magma would have been water-saturated over the vertical extent of the present outcrop. However, the vesicularity of the rhyolite is substantially lower than that predicted from closed-system models of vesiculation under equilibrium conditions. At a given elevation in the vent, the volume fraction of primary vesicles in the rhyolite increases from zero close to the vent margin to values of 20–40 vol.% in the central part. In the centre the vesicularity increases upward from approximately 20 vol.% at 300 m below the canyon rim to approximately 40 vol.% at 200 m, above which it shows little increase. To account for the discrepancy between observed vesicularity and measured water content, we conclude that gas escaped during ascent, probably beginning at depths greater than exposed, by flow through the vesicular magma. Gas escape was most efficient near the vent margin, and we postulate that this is due both to the slow ascent of magma there, giving the most time for gas to escape, and to shear, favouring bubble coalescence. Such shear-related permeability in erupting magma is supported by the preserved distribution of textures and vesicularity in the rhyolite: Vesicles are flattened and overlapping near the dense margins and become progressively more isolated and less deformed toward the porous centre. Local zones have textures which suggest the coalescence of bubbles to form permeable, collapsing foams, implying the former existence of channels for gas migration. Local channelling of gas into the country rocks is suggested by the presence of sub-horizontal syn-eruptive rhyolitic tuffisite veins which depart from the vent margin and invade the adjacent country rock. In the central part of the vent, similar local channelling of gas is indicated by steep syn-eruption tuffisite veins which cut the rhyolite itself. We conclude that the suppression of explosive eruption resulted from gas separation from the ascending magma and vent structure by shear-related porous flow and channelling of gas through tuffisite veins. These mechanisms of gas loss may be responsible for the commonly observed transition from explosive to effusive behaviour during the eruption of silicic magma.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0819
    Keywords: Key words Co-ignimbrite plumes ; Mount St. Helens ; Hydraulic jump ; Topography ; Theoretical models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract  Four co-ignimbrite plumes were generated along the flow path of the pyroclastic flow of 7 August 1980 at Mount St. Helens. Three of the plumes were generated in discrete pulses which can be linked to changes in slope along the channel. One plume was generated at the mouth of the channel where the flow decelerated markedly as it moved onto the lower slopes of the pumice plain. Plume generation here may be triggered by enhanced mixing due to a hydraulic jump associated with an abrupt slope change. Measurements of plume ascent velocity and width show that the co-ignimbrite plumes increased in velocity with height. The plumes have initial velocities of 1–2 m/s. Two of the plumes reached a velocity maximum (4.6 and 8.8 m/s, respectively, at heights of 270 and 315 m above the flow) and thereafter decelerated. The other plumes reached velocities of 6.2 and 13 m/s. The four plumes become systematically less energetic downstream as measured by their ascent rates, which can be interpreted as a consequence of decreasing interaction of the pyroclastic flow front with the atmosphere. Theoretical models of both co-ignimbrite plumes and discrete co-ignimbrite clouds assume that there is no initial momentum, and both are able to predict the observed acceleration stage. The rising plumes mix with and heat air and sediment out particles causing their buoyancy to increase. Theoretical models agree well with observations and suggest that the initial motion of the ascending material is best described as a discrete thermal cloud which expands as it entrains air, whereas the subsequent motion of the head may become influenced by material supplied from the following plume. The models agree well with observations for an initial temperature of the ash and air mixture in the range of 500–600 K, which is in turn consistent with the measured initial ash temperature of around 920 K. Ash masses of 3.4×105 to 1.8×106 kg are estimated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Contributions to mineralogy and petrology 132 (1998), S. 21-33 
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Xenolith assimilation has been simulated with experiments involving melting wax spheres into hot water and aqueous solutions and characterised by a theoretical analysis. Both the cases of neutrally buoyant stationary spheres and spheres sinking through the hot host fluid are examined. Melt generated on a sphere's surface flows (compositional convection) in two regimes; as a sheet over one hemisphere and then detaching as finger plumes from the other. Positional variations in the melting rate are dominantly controlled by differences in the melt layer thickness which influence the thermal gradient and heat flux across the layer. The theoretical model predicts melt layer thicknesses and the heat flux from the surrounding fluid. Calculated melting rates agree well with experimental measurements. Partial melting of non-eutectic compositions produces a layer of crystal-melt mush at the xenolith's surface. The theoretical analysis is extended to account for variation in rheological properties across the mush layer. When stoped into typical magmas, xenoliths of common continental crust lithologies are predicted to melt at rates in the order of 2 mm/hour. Thicknesses of the mobile mush layer around xenoliths are predicted to be typically a few centimetres. Relatively mafic lithologies can melt quicker than silicic compositions because, although they are typically more refractory, their lower melt viscosities result in thinner mush layers and so higher heat fluxes. Especially quick melting of water-saturated lithologies occurs as a consequence of both the reduction in melting temperatures and melt viscosities. Due to hot ambient conditions in the lower continental crust the assimilation of xenoliths into underplated basaltic magma can be very rapid. For granulites and mafic-granulites the predicted melting rates are up to 17 mm/hour. Fast rates of melting and efficient mixing of melt into the host magma indicate that assimilation of xenoliths will have a significant influence on the compositional and thermal evolution of magmas.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1996-11-25
    Description: Solid bodies immersed in hot fluids may melt. The molten material produced can then mix with, and be assimilated into, the fluid influencing its compositional and thermal states. Compositional convection of melt and thermal convection of cooled fluid around the solid determine the heat flux from the fluid to the solid's surface. This, together with the thermal properties of the solid, controls the rate of melting. Experiments on melting wax spheres into water are described; these have shown how variations in the nature of melt flow round the sphere cause differing melting rates and hence the development of a distinctive melting morphology. Melting rates are calculated by a simple theoretical analysis which estimates melt layer thickness and the heat flux from the fluid. Melting rate predictions agree well with the experimental data. A geological application occurs when magma incorporates blocks of its surrounding wall rock. Relatively rapid melting rates are estimated, typically in the order of a half metre per day. Such fast rates indicate that this method of contamination may be an important influence on magmatic evolution in continental environments.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1996-02-10
    Description: Entrainment of ambient fluid into both two-dimensional and axisymmetric gravity currents is investigated experimentally using a novel neutralization technique. The technique involves the titrative neutralization of an alkaline gravity current which intrudes into and entrains an acidic ambient, and is visualized using a pH indicator solution. Using this technique, we can determine quantitative results for the amount of dilution in the head of the current. The head of the current is able to entrain ambient fluid both by shear instabilities on the current/ambient interface and by over-riding (relatively light) ambient fluid. Guided by our experimental observations, we present two slightly different theoretical models to determine the entrainment into the head of the current as a function of distance from the source for the instantaneous release of a constant volume of fluid in a two-dimensional geometry. By dimensional analysis, we determine from both models that the dimensionless entrainment or dilution ratio, E, defined as the ratio of the volumes of ambient and original fluid in the head, is independent of the initial reduced gravity of the current; and this result is confirmed by our experiments in Boussinesq situations. Our theoretical evaluation of E in terms of the initial cross-sectional area of the current agrees very well with our experimental measurements on the incorporation of an entrainment coefficient α, evaluated experimentally to be 0.063 ± 0.003. We also obtain experimental results for constant-volume gravity currents moving over horizontal surfaces of varying roughness. A particularly surprising result from all the experiments, which is reflected in the theoretical models, is that the head remains essentially unmixed - the entrainment is negligible - in the slumping phase. Thus the heads of gravity currents with identical initial cross-sectional areas but different initial aspect ratios (lock lengths) will begin to be diluted by ambient fluid at different positions and hence propagate at different rates. A range of similar results is determined, both theoretically and experimentally, for the instantaneous release of a fixed volume of (heavy) fluid in an axisymmetric geometry. By contrast, the results of our experiments with gravity currents fed by a constant flux exhibit markedly different entrainment dynamics due to the continual replenishment of the fluid in the head by the constant input of undiluted fluid from the tail.
    Print ISSN: 0022-1120
    Electronic ISSN: 1469-7645
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1999-06-01
    Print ISSN: 0037-0746
    Electronic ISSN: 1365-3091
    Topics: Geosciences
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1995-10-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-03-10
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...