ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1998-11-13
    Description: The ectodomains of numerous proteins are released from cells by proteolysis to yield soluble intercellular regulators. The responsible protease, tumor necrosis factor-alpha converting enzyme (TACE), has been identified only in the case when tumor necrosis factor-alpha (TNFalpha) is released. Analyses of cells lacking this metalloproteinase-disintegrin revealed an expanded role for TACE in the processing of other cell surface proteins, including a TNF receptor, the L-selectin adhesion molecule, and transforming growth factor-alpha (TGFalpha). The phenotype of mice lacking TACE suggests an essential role for soluble TGFalpha in normal development and emphasizes the importance of protein ectodomain shedding in vivo.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Peschon, J J -- Slack, J L -- Reddy, P -- Stocking, K L -- Sunnarborg, S W -- Lee, D C -- Russell, W E -- Castner, B J -- Johnson, R S -- Fitzner, J N -- Boyce, R W -- Nelson, N -- Kozlosky, C J -- Wolfson, M F -- Rauch, C T -- Cerretti, D P -- Paxton, R J -- March, C J -- Black, R A -- CA43793/CA/NCI NIH HHS/ -- DK53804/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1998 Nov 13;282(5392):1281-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Immunex Corporation, Seattle, WA 98101, USA. peschon@immunex.com〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9812885" target="_blank"〉PubMed〈/a〉
    Keywords: ADAM Proteins ; Amino Acid Sequence ; Animals ; Catalytic Domain ; Cell Membrane/*metabolism ; Cells, Cultured ; Crosses, Genetic ; *Embryonic and Fetal Development ; L-Selectin/metabolism ; Ligands ; Membrane Proteins/*metabolism ; Metalloendopeptidases/chemistry/genetics/*metabolism ; Mice ; Mice, Inbred C57BL ; Molecular Sequence Data ; Mutation ; Phenotype ; Protein Processing, Post-Translational ; Receptors, Tumor Necrosis Factor/metabolism ; Transforming Growth Factor alpha/metabolism ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1998-09-11
    Description: The gastric stomach of humans is a barrier to food-borne pathogens, but Escherichia coli can survive at pH 2.0 if it is grown under mildly acidic conditions. Cattle are a natural reservoir for pathogenic E. coli, and cattle fed mostly grain had lower colonic pH and more acid-resistant E. coli than cattle fed only hay. On the basis of numbers and survival after acid shock, cattle that were fed grain had 10(6)-fold more acid-resistant E. coli than cattle fed hay, but a brief period of hay feeding decreased the acid-resistant count substantially.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Diez-Gonzalez, F -- Callaway, T R -- Kizoulis, M G -- Russell, J B -- New York, N.Y. -- Science. 1998 Sep 11;281(5383):1666-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Biological Sciences, Section of Microbiology, Cornell University and Agricultural Research Service, U.S. Department of Agriculture, Ithaca, NY 14853-8101, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9733511" target="_blank"〉PubMed〈/a〉
    Keywords: *Animal Feed ; Animal Husbandry ; Animals ; Bacteria, Anaerobic/growth & development ; Cattle/*microbiology ; Colon/chemistry/*microbiology ; Colony Count, Microbial ; Culture Media ; Diet ; *Edible Grain ; Escherichia coli/*growth & development ; Fatty Acids, Volatile/analysis ; Hydrogen-Ion Concentration ; Lactic Acid/analysis ; *Poaceae ; Random Allocation ; Rumen/chemistry/microbiology ; Succinates/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1995-07-28
    Description: T cell hybridomas require the immediate-early gene NGFI-B (nur77) for T cell receptor (TCR)-mediated apoptosis, a model for negative selection of self-reactive T cells. TCR-mediated death was examined in mice bearing an NGFI-B loss-of-function mutation, either by administration of antibodies to CD3 (anti-CD3) or in two well-characterized transgenic models expressing self-reactive TCRs. Both the extent and the rate of thymocyte death were unimpaired. Anti-CD3-induced death was normal in CD4+ peripheral T cells, in which death is mediated predominantly by the Fas signaling pathway. Thus, no unique requirement for NGFI-B is observed for thymic or peripheral T cell death.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, S L -- Wesselschmidt, R L -- Linette, G P -- Kanagawa, O -- Russell, J H -- Milbrandt, J -- P01 CA49712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Jul 28;269(5223):532-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7624775" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies ; Antigens, CD3/immunology/physiology ; *Apoptosis ; Cells, Cultured ; Clonal Deletion ; Crosses, Genetic ; DNA-Binding Proteins/genetics/*physiology ; Female ; Gene Targeting ; Hybridomas ; Male ; Mice ; Mice, Transgenic ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Receptors, Antigen, T-Cell, alpha-beta/*physiology ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid/genetics/*physiology ; Stem Cells ; T-Lymphocyte Subsets/cytology ; T-Lymphocytes/*cytology/immunology ; Thymus Gland/cytology ; Transcription Factors/genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-11-03
    Description: Males with X-linked severe combined immunodeficiency (XSCID) have defects in the common cytokine receptor gamma chain (gamma c) gene that encodes a shared, essential component of the receptors of interleukin-2 (IL-2), IL-4, IL-7, IL-9, and IL-15. The Janus family tyrosine kinase Jak3 is the only signaling molecule known to be associated with gamma c, so it was hypothesized that defects in Jak3 might cause an XSCID-like phenotype. A girl with immunological features indistinguishable from those of XSCID was therefore selected for analysis. An Epstein-Barr virus (EBV)-transformed cell line derived from her lymphocytes had normal gamma c expression but lacked Jak3 protein and had greatly diminished Jak3 messenger RNA. Sequencing revealed a different mutation on each allele: a single nucleotide insertion resulting in a frame shift and premature termination in the Jak3 JH4 domain and a nonsense mutation in the Jak3 JH2 domain. The lack of Jak3 expression correlated with impaired B cell signaling, as demonstrated by the inability of IL-4 to activate Stat6 in the EBV-transformed cell line from the patient. These observations indicate that the functions of gamma c are dependent on Jak3 and that Jak3 is essential for lymphoid development and signaling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Russell, S M -- Tayebi, N -- Nakajima, H -- Riedy, M C -- Roberts, J L -- Aman, M J -- Migone, T S -- Noguchi, M -- Markert, M L -- Buckley, R H -- O'Shea, J J -- Leonard, W J -- M01-RR30/RR/NCRR NIH HHS/ -- R37AI18613-13/AI/NIAID NIH HHS/ -- T32 CA09058/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1995 Nov 3;270(5237):797-800.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health (NIH), Bethesda, MD 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481768" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; B-Lymphocytes/*immunology ; Base Sequence ; Cell Line, Transformed ; Female ; Frameshift Mutation ; Genetic Linkage ; Humans ; Infant ; Interleukin-4/pharmacology ; Janus Kinase 3 ; Molecular Sequence Data ; Phenotype ; Point Mutation ; Protein-Tyrosine Kinases/deficiency/genetics/*physiology ; RNA, Messenger/genetics/metabolism ; Receptors, Interleukin/physiology ; STAT6 Transcription Factor ; Severe Combined Immunodeficiency/*enzymology/genetics/immunology ; Signal Transduction ; T-Lymphocytes/*immunology ; Trans-Activators/metabolism ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-15
    Description: We present numerical simulations of the collision and subsequent interaction of two initially orthogonal, twisted, force free field magnetic fluxtubes. The simulations were carried out using a new three dimensional explicit parallelized Fourier collocation algorithm for solving the viscoresistive equations of compressible magnetohydrodynamics. It is found that, under a wide range of conditions, the fluxtubes can 'tunnel' through each other. Two key conditions must be satisfied for tunneling to occur: the magnetic field must be highly twisted with a field line pitch much greater than 1, and the magnetic Lundquist number must be somewhat large, greater than or equal to 2880. This tunneling behavior has not been seen previously in studies of either vortex tube or magnetic fluxtube interactions. An examination of magnetic field lines shows that tunneling is due to a double reconnection mechanism. Initially orthogonal field lines reconnect at two specific locations, exchange interacting sections and 'pass' through each other. The implications of these results for solar and space plasmas are discussed.
    Keywords: Plasma Physics
    Type: AD-A307358 , NRL/MR/6440--96-7839
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...