ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Base Sequence  (7)
  • American Association for the Advancement of Science (AAAS)  (7)
  • 1995-1999  (7)
  • 1950-1954
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (7)
Years
Year
  • 1
    Publication Date: 1997-11-21
    Description: The wild-type Caenorhabditis elegans nematode ages rapidly, undergoing development, senescence, and death in less than 3 weeks. In contrast, mutants with reduced activity of the gene daf-2, a homolog of the insulin and insulin-like growth factor receptors, age more slowly than normal and live more than twice as long. These mutants are active and fully fertile and have normal metabolic rates. The life-span extension caused by daf-2 mutations requires the activity of the gene daf-16. daf-16 appears to play a unique role in life-span regulation and encodes a member of the hepatocyte nuclear factor 3 (HNF-3)/forkhead family of transcriptional regulators. In humans, insulin down-regulates the expression of certain genes by antagonizing the activity of HNF-3, raising the possibility that aspects of this regulatory system have been conserved.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, K -- Dorman, J B -- Rodan, A -- Kenyon, C -- AG11816/AG/NIA NIH HHS/ -- New York, N.Y. -- Science. 1997 Nov 14;278(5341):1319-22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94143-0554, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9360933" target="_blank"〉PubMed〈/a〉
    Keywords: Aging/genetics ; Amino Acid Sequence ; Animals ; Base Sequence ; Caenorhabditis elegans/*genetics/physiology ; *Caenorhabditis elegans Proteins ; Cloning, Molecular ; DNA, Complementary ; Forkhead Transcription Factors ; Genes, Helminth ; Humans ; Insulin/physiology ; Longevity/genetics ; Molecular Sequence Data ; Mutation ; Nuclear Proteins/genetics ; Phenotype ; Receptor, Insulin/genetics/physiology ; Sequence Alignment ; Somatomedins/physiology ; Transcription Factors/chemistry/*genetics/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1996-10-25
    Description: The human genome is thought to harbor 50,000 to 100,000 genes, of which about half have been sampled to date in the form of expressed sequence tags. An international consortium was organized to develop and map gene-based sequence tagged site markers on a set of two radiation hybrid panels and a yeast artificial chromosome library. More than 16,000 human genes have been mapped relative to a framework map that contains about 1000 polymorphic genetic markers. The gene map unifies the existing genetic and physical maps with the nucleotide and protein sequence databases in a fashion that should speed the discovery of genes underlying inherited human disease. The integrated resource is available through a site on the World Wide Web at http://www.ncbi.nlm.nih.gov/SCIENCE96/.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schuler, G D -- Boguski, M S -- Stewart, E A -- Stein, L D -- Gyapay, G -- Rice, K -- White, R E -- Rodriguez-Tome, P -- Aggarwal, A -- Bajorek, E -- Bentolila, S -- Birren, B B -- Butler, A -- Castle, A B -- Chiannilkulchai, N -- Chu, A -- Clee, C -- Cowles, S -- Day, P J -- Dibling, T -- Drouot, N -- Dunham, I -- Duprat, S -- East, C -- Edwards, C -- Fan, J B -- Fang, N -- Fizames, C -- Garrett, C -- Green, L -- Hadley, D -- Harris, M -- Harrison, P -- Brady, S -- Hicks, A -- Holloway, E -- Hui, L -- Hussain, S -- Louis-Dit-Sully, C -- Ma, J -- MacGilvery, A -- Mader, C -- Maratukulam, A -- Matise, T C -- McKusick, K B -- Morissette, J -- Mungall, A -- Muselet, D -- Nusbaum, H C -- Page, D C -- Peck, A -- Perkins, S -- Piercy, M -- Qin, F -- Quackenbush, J -- Ranby, S -- Reif, T -- Rozen, S -- Sanders, C -- She, X -- Silva, J -- Slonim, D K -- Soderlund, C -- Sun, W L -- Tabar, P -- Thangarajah, T -- Vega-Czarny, N -- Vollrath, D -- Voyticky, S -- Wilmer, T -- Wu, X -- Adams, M D -- Auffray, C -- Walter, N A -- Brandon, R -- Dehejia, A -- Goodfellow, P N -- Houlgatte, R -- Hudson, J R Jr -- Ide, S E -- Iorio, K R -- Lee, W Y -- Seki, N -- Nagase, T -- Ishikawa, K -- Nomura, N -- Phillips, C -- Polymeropoulos, M H -- Sandusky, M -- Schmitt, K -- Berry, R -- Swanson, K -- Torres, R -- Venter, J C -- Sikela, J M -- Beckmann, J S -- Weissenbach, J -- Myers, R M -- Cox, D R -- James, M R -- Bentley, D -- Deloukas, P -- Lander, E S -- Hudson, T J -- HG00098/HG/NHGRI NIH HHS/ -- HG00206/HG/NHGRI NIH HHS/ -- HG00835/HG/NHGRI NIH HHS/ -- Wellcome Trust/United Kingdom -- etc. -- New York, N.Y. -- Science. 1996 Oct 25;274(5287):540-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8849440" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Cell Line ; *Chromosome Mapping ; Chromosomes, Artificial, Yeast ; Computer Communication Networks ; DNA, Complementary/genetics ; Databases, Factual ; Gene Expression ; Genetic Markers ; *Genome, Human ; *Human Genome Project ; Humans ; Multigene Family ; RNA, Messenger/genetics ; Sequence Homology, Nucleic Acid ; Sequence Tagged Sites
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1996-12-20
    Description: The crystal structure of an unmodified hammerhead RNA in the absence of divalent metal ions has been solved, and it was shown that this ribozyme can cleave itself in the crystal when divalent metal ions are added. This biologically active RNA fold is the same as that found previously for two modified hammerhead ribozymes. Addition of divalent cations at low pH makes it possible to capture the uncleaved RNA in metal-bound form. A conformational intermediate, having an additional Mg(II) bound to the cleavage-site phosphate, was captured by freeze-trapping the RNA at an active pH prior to cleavage. The most significant conformational changes were limited to the active site of the ribozyme, and the changed conformation requires only small additional movements to reach a proposed transition-state.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Scott, W G -- Murray, J B -- Arnold, J R -- Stoddard, B L -- Klug, A -- GM-49857/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Dec 20;274(5295):2065-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 2QH, England.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8953035" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Crystallization ; Crystallography, X-Ray ; Freezing ; Hydrogen-Ion Concentration ; Magnesium/metabolism ; Manganese/metabolism ; Models, Molecular ; *Nucleic Acid Conformation ; RNA, Catalytic/*chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1998-03-07
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Graves, B J -- New York, N.Y. -- Science. 1998 Feb 13;279(5353):1000-2.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Huntsman Cancer Institute, Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84132, USA. graves@bioscience.utah.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9490475" target="_blank"〉PubMed〈/a〉
    Keywords: Ankyrins/chemistry ; Base Sequence ; Binding Sites ; DNA/chemistry/*metabolism ; DNA-Binding Proteins/*chemistry/*metabolism ; Dimerization ; GA-Binding Protein Transcription Factor ; Hydrogen Bonding ; Leucine Zippers ; Models, Molecular ; Protein Conformation ; Protein Structure, Secondary ; Transcription Factors/*chemistry/*metabolism ; Transcriptional Activation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-05-16
    Description: In many organisms, pattern formation in the embryo develops from the polarized distributions of messenger RNAs (mRNAs) in the egg. In Xenopus, the mRNA encoding Vg1, a growth factor involved in mesoderm induction, is localized to the vegetal cortex of oocytes. A protein named Vera was shown to be involved in Vg1 mRNA localization. Vera cofractionates with endoplasmic reticulum (ER) membranes, and endogenous Vg1 mRNA is associated with a subcompartment of the ER. Vera may promote mRNA localization in Xenopus oocytes by mediating an interaction between the Vg1 3' untranslated region and the ER subcompartment.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Deshler, J O -- Highett, M I -- Schnapp, B J -- GM16114-03/GM/NIGMS NIH HHS/ -- NS-26846/NS/NINDS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 16;276(5315):1128-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9148809" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Biological Transport ; Endoplasmic Reticulum/*metabolism ; Glycoproteins/*genetics ; Molecular Sequence Data ; Mutation ; Oocytes/*metabolism ; Oogenesis ; Protein Binding ; Proteins/*metabolism ; RNA, Messenger/genetics/*metabolism ; Repetitive Sequences, Nucleic Acid ; Transforming Growth Factor beta/*genetics ; Xenopus Proteins ; Xenopus laevis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-09-29
    Description: Conformational changes, including local protein folding, play important roles in protein-DNA interactions. Here, studies of the transcription factor Ets-1 provided evidence that local protein unfolding also can accompany DNA binding. Circular dichroism and partial proteolysis showed that the secondary structure of the Ets-1 DNA-binding domain is unchanged in the presence of DNA. In contrast, DNA allosterically induced the unfolding of an alpha helix that lies within a flanking region involved in the negative regulation of DNA binding. These findings suggest a structural basis for the intramolecular inhibition of DNA binding and a mechanism for the cooperative partnerships that are common features of many eukaryotic transcription factors.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petersen, J M -- Skalicky, J J -- Donaldson, L W -- McIntosh, L P -- Alber, T -- Graves, B J -- CA 42014/CA/NCI NIH HHS/ -- GM 48958/GM/NIGMS NIH HHS/ -- GM38663/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1995 Sep 29;269(5232):1866-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City 84132, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7569926" target="_blank"〉PubMed〈/a〉
    Keywords: Base Sequence ; Binding Sites ; Circular Dichroism ; DNA/chemistry/*metabolism ; Molecular Sequence Data ; Protein Binding ; Protein Conformation ; *Protein Folding ; *Protein Structure, Secondary ; Proto-Oncogene Protein c-ets-1 ; Proto-Oncogene Proteins/chemistry/*metabolism ; Proto-Oncogene Proteins c-ets ; Transcription Factors/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1995-03-24
    Description: Congenital lipoid adrenal hyperplasia is an autosomal recessive disorder that is characterized by impaired synthesis of all adrenal and gonadal steroid hormones. In three unrelated individuals with this disorder, steroidogenic acute regulatory protein, which enhances the mitochondrial conversion of cholesterol into pregnenolone, was mutated and nonfunctional, providing genetic evidence that this protein is indispensable normal adrenal and gonadal steroidogenesis.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lin, D -- Sugawara, T -- Strauss, J F 3rd -- Clark, B J -- Stocco, D M -- Saenger, P -- Rogol, A -- Miller, W L -- HD 06274/HD/NICHD NIH HHS/ -- HD 07688/HD/NICHD NIH HHS/ -- HD 28825/HD/NICHD NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1995 Mar 24;267(5205):1828-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pediatrics, University of California, San Francisco 94143.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7892608" target="_blank"〉PubMed〈/a〉
    Keywords: Adrenal Glands/*metabolism ; Adrenal Hyperplasia, Congenital/metabolism ; Amino Acid Sequence ; Animals ; Base Sequence ; Biological Transport/physiology ; Cell Line ; Cholesterol/*metabolism ; Female ; Gonads/*metabolism ; Haplorhini ; Hormones/*biosynthesis ; Humans ; Male ; Mitochondria/metabolism ; Molecular Sequence Data ; Phosphoproteins/genetics/*physiology ; Point Mutation ; Steroids/*biosynthesis ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...