ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Pitzer's equations  (1)
  • activity  (1)
  • 1995-1999  (2)
  • 1960-1964
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of solution chemistry 28 (1999), S. 849-864 
    ISSN: 1572-8927
    Keywords: Apparent molar heat capacities ; partial molar heat capacities ; Pitzer's equations ; lanthanide elements ; transition metals ; alkali metal sulfates ; magnesium sulfate
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Apparent molar heat capacities C p,φ for 71 rare earth chlorides, nitrates, and perchlorates, alkaline earth and transition metal chlorides, nitrates, and perchlorates, and alkali metal carbonates and sulfates have been fitted to the Pitzer equation for heat capacities. The apparent molar heat capacities at infinite dilution $$C_{{\text{p,}}\Phi }^{\text{o}} $$ (equal to the standard partial molar heat capacity, $$\overline C _{{\text{p,2}}}^{\text{o}} $$ ) were used to evaluate a set of “best” ionic heat capacities, from which improved values of $$C_{{\text{p,}}\Phi }^{\text{o}} $$ for the electrolytes were calculated. These were then used in the Pitzer equation to reevaluate the higher Pitzer coefficients. The Pitzer coefficients so evaluated can express, in most cases, the behavior of C p,φ within experimental error from infinite dilution to the upper limit of the data. Ionic heat capacities have been correlated with the absolute entropies of the ions by statistically assigning the ionic heat capacities to obtain the best linear fit.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Aquatic geochemistry 4 (1998), S. 153-199 
    ISSN: 1573-1421
    Keywords: Activity coefficients ; activity ; ions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract This paper reviews the present status of the Pitzer chemical equilibrium model, which can be used to characterize the one-atmosphere activity coefficients of ionic and non-ionic solutes in natural waters as a function of temperature and ionic strength. The model considers the ionic interactions of the major seasalt ions (H, Na, K, Mg, Ca, Sr, Cl, Br, OH, HCO3, B(OH)4, HSO4, SO4, CO3, CO2, B(OH)3, H2O) and is based on the 25 °C model of Weare and co-workers. The model has been extended by a number of workers so that reasonable estimates can be made of the activity coefficients of most of the major seasalt ions from 0 to 250 °C. Recently coefficients for a number of solutes that are needed to determine the dissociation constants of the acids from 0 to 50 °C (H3CO3, B(OH)3, H2O, HF, HSO 4 - , H3PO4, H2S, NH 4 + etc.) have been added to the model. These results have been used to examine the carbonate system in natural waters and determine the activity of inorganic anions that can complex trace metals. The activity and osmotic coefficients determined from the model are shown to be in good agreement with measured values in seawater. This model can serve as the foundation for future expansions that can examine the activity coefficient and speciation of trace metals in natural waters. At present this is only possible from 0 to 50 °C over a limited range of ionic strengths (〈1.0) due to the limited stability constants for the formation of the metal complexes. The future work needed to extend the Pitzer model to trace metals is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...