Skip to main content
Log in

Modeling Heat Capacities of High Valence-Type Electrolyte Solutions with Pitzer's Equations

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Apparent molar heat capacities C p,φ for 71 rare earth chlorides, nitrates, and perchlorates, alkaline earth and transition metal chlorides, nitrates, and perchlorates, and alkali metal carbonates and sulfates have been fitted to the Pitzer equation for heat capacities. The apparent molar heat capacities at infinite dilution\(C_{{\text{p,}}\Phi }^{\text{o}} \)(equal to the standard partial molar heat capacity, \(\overline C _{{\text{p,2}}}^{\text{o}} \)) were used to evaluate a set of “best” ionic heat capacities, from which improved values of \(C_{{\text{p,}}\Phi }^{\text{o}} \) for the electrolytes were calculated. These were then used in the Pitzer equation to reevaluate the higher Pitzer coefficients. The Pitzer coefficients so evaluated can express, in most cases, the behavior of C p,φ within experimental error from infinite dilution to the upper limit of the data. Ionic heat capacities have been correlated with the absolute entropies of the ions by statistically assigning the ionic heat capacities to obtain the best linear fit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. S. Pitzer, J. Phys. Chem. 77, 268 (1973).

    Google Scholar 

  2. S. L. Clegg and M. Whitfield, in Activity Coefficients in Electrolytes Solutions, K. S. Pitzer, ed. (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  3. C. E. Harvie and J. H. Weare, Geochim. Cosmochim. Acta 44, 981 (1980).

    Google Scholar 

  4. C. E. Harvie, N. Møller and J. H. Weare, Geochim. Cosmochim. Acta 48, 723 (1984).

    Google Scholar 

  5. B. S. Krumgalz and F. J. Millero, Marine Chem. 11, 209 (1982).

    Google Scholar 

  6. J. P. Greenberg and N. Møller, Geochim. Cosmochim. Acta 53, 2503 (1989).

    Google Scholar 

  7. D. M. Campbell, F. J. Millero, R. N. Roy, L. Roy, M. Lawson, K. Vogel, and C. P. Moore, Marine Chem. 44, 221 (1993).

    Google Scholar 

  8. N. Møller, Geochim. Cosmochim. Acta 52, 821 (1988).

    Google Scholar 

  9. R. T. Pabalan and K. S. Pitzer, Geochim. Cosmochim. Acta 51, 2429 (1987).

    Google Scholar 

  10. R. J. Spencer and N. Møller, Geochim. Cosmochim. Acta 54, 575 (1990).

    Google Scholar 

  11. L. M. Connaughton, J. P. Hershey, and F. J. Millero, J. Solution Chem. 15, 989 (1986).

    Google Scholar 

  12. L. M. Connaughton, F. J. Millero, and K. S. Pitzer, J. Solution Chem. 18, 1007 (1989).

    Google Scholar 

  13. C. Monnin, Geochim. Cosmochim. Acta 53, 1177 (1989).

    Google Scholar 

  14. C. Monnin, Geochim. Cosmochim. Acta 54, 3265 (1990).

    Google Scholar 

  15. C. M. Criss and F. J. Millero, J. Phys. Chem. 100, 1288 (1996).

    Google Scholar 

  16. K. S. Pitzer, in Activity Coefficients in Electrolytes Solutions K. S. Pitzer, ed. (CRC Press, Boca Raton, FL, 1991).

    Google Scholar 

  17. P. Picker, P.-A. Leduc, P. R. Philip, and J. E. Desnoyers, J. Chem. Thermodyn. 3, 631 (1971).

    Google Scholar 

  18. C. Xiao and P. R. Tremaine, J. Chem. Thermodyn. 28, 43 (1996).

    Google Scholar 

  19. C. Xiao and P. R. Tremaine, J. Chem. Thermodyn. 29, 827 (1997).

    Google Scholar 

  20. F. H. Spedding and K. C. Jones, J. Phys. Chem. 70, 2450 (1966).

    Google Scholar 

  21. F. H. Spedding, J. L. Baker, and J. P. Walters, J. Chem. Eng. Data 20, 189 (1975).

    Google Scholar 

  22. F. H. Spedding, J. P. Walters, and J. L. Baker, J. Chem. Eng. Data 20, 438 (1975).

    Google Scholar 

  23. F. H. Spedding J. L. Baker, and J. P. Walters, J. Chem. Eng. Data 24, 298 (1979).

    Google Scholar 

  24. E. L. Shock and H. C. Helgeson, Geochim. Cosmochim. Acta 52, 2009 (1988).

    Google Scholar 

  25. C. M. Criss and J. W. Cobble, J. Amer. Chem. Soc. 86, 5390 (1964).

    Google Scholar 

  26. G. Perron, J. E. Desnoyers, and F. J. Millero, Can. J. Chem. 53, 1134 (1975).

    Google Scholar 

  27. G. Perron, J. E. Desnoyers, and F. J. Millero, Can. J. Chem. 52, 3738 (1974).

    Google Scholar 

  28. J. E. Desnoyers, C. de Visser, G. Perron, and P. Picker, J. Solution Chem. 5, 605 (1976).

    Google Scholar 

  29. J.-L. Fortier, P.-A. Leduc, and J. E. Desnoyers, J. Solution Chem. 3, 323 (1974).

    Google Scholar 

  30. I. V. Olofsson, J. J. Spitzer, and L. G. Hepler, Can. J. Chem. 56, 1871 (1978).

    Google Scholar 

  31. M. Randall and F. D. Rossini, J. Amer. Chem. Soc. 51, 323 (1929).

    Google Scholar 

  32. G. Perron, A. Roux, and J. E. Desnoyers, Can. J. Chem. 59, 3049 (1981).

    Google Scholar 

  33. P. P. S. Saluja and J. C. LeBlanc, J. Chem. Eng. Data 32, 72 (1987).

    Google Scholar 

  34. J. J. Spitzer, I. V. Olofsson, P. P. Singh, and L. G. Hepler, J. Chem. Thermodyn. 11, 233 (1979).

    Google Scholar 

  35. J. J. Spitzer, P. P. Singh, K. G. McCurdy, and L. G. Hepler, J. Solution Chem. 7, 81 (1978).

    Google Scholar 

  36. T. W. Richards and M. Dole, J. Amer. Chem. Soc. 51, 794 (1929).

    Google Scholar 

  37. J. J. Spitzer, P. P. Singh, I. V. Olofsson, and L. G. Hepler, J. Solution Chem. 7, 623 (1978).

    Google Scholar 

  38. J. J. Spitzer, I. V. Olofsson, P. P. Singh, and L. G. Hepler, Thermochim. Acta 28, 155 (1979).

    Google Scholar 

  39. J. J. Spitzer, I. V. Olofsson, P. P. Singh, and L. G. Hepler, Can. J. Chem. 57, 2798 (1979).

    Google Scholar 

  40. E. C. Jekel, C. M. Criss, and J. W. Cobble, J. Amer. Chem. Soc. 86, 5404 (1964).

    Google Scholar 

  41. C. M. Ciss and J. W. Cobble, J. Amer. Chem. Soc. 83, 3223 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Criss, C.M., Millero, F.J. Modeling Heat Capacities of High Valence-Type Electrolyte Solutions with Pitzer's Equations. Journal of Solution Chemistry 28, 849–864 (1999). https://doi.org/10.1023/A:1021732214671

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021732214671

Navigation