ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Institute of Physics  (42)
  • American Geophysical Union  (26)
  • American Institute of Physics (AIP)  (14)
  • 1995-1999  (69)
  • 1960-1964  (13)
Collection
Years
Year
  • 1
    Publication Date: 1995-07-01
    Print ISSN: 8755-1209
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The x-ray emission from plasmas created by the Naval Research Laboratory Nike KrF laser [Phys. Plasmas 3, 2098 (1996) ] was characterized using imaging and spectroscopic instruments. The laser wavelength was 1/4 μm, and the beams were smoothed by induced spatial incoherence (ISI). The targets were thin foils of CH, aluminum, titanium, and cobalt and were irradiated by laser energies in the range 100–1500 J. A multilayer mirror microscope operating at an energy of 95 eV recorded images of the plasma with a spatial resolution of 2 μm. The variation of the 95 eV emission across the 800 μm focal spot was 1.3% rms. Using a curved crystal imager operating in the 1–2 keV x-ray region, the density, temperature, and opacity of aluminum plasmas were determined with a spatial resolution of 10 μm perpendicular to the target surface. The spectral line ratios indicated that the aluminum plasmas were relatively dense, cool, and optically thick near the target surface. The absolute radiation flux was determined at 95 eV and in x-ray bandpasses covering the 1–8 keV region. The electron temperature inferred from the slope of the x-ray flux versus energy data in the 5–8 keV region was 900 eV for an incident laser energy of 200 J and an intensity of ≈1013 W/cm2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Inductively coupled plasma (ICP) etching reactors are rapidly becoming the tool of choice for low gas pressure, high plasma density etching of semiconductor materials. Due to their symmetry of excitation, these devices tend to have quite uniform etch rates across the wafer. However, side to side and azimuthal variations in these rates have been observed, and have been attributed to various asymmetries in pumping, reactor structure and coil properties. In this article, a three-dimensional computer model for an ICP etching reactor is reported whose purposes is to investigate these asymmetries. The model system is an ICP reactor powered at 13.56 MHz having flat coils of nested annuli powering Ar/N2 and Cl2 plasmas over a 20-cm diam wafer. For demonstration purposes, asymmetries were built into the reactor geometry which include a wafer-load lock bay, wafer clamps, electrical feeds to the coil, and specifics of the coil design. Comparisons are made between computed and experimentally measured ion densities and poly-silicon etch rates in Cl2 plasmas. We find that the electrical transmission line properties of the coil have a large influence on the uniformity of plasma generation and ion fluxes to the wafer. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 77 (1995), S. 2479-2485 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Low (keV) and high (MeV) energy Al and B implants were performed into n-type 6H- and 3C-SiC at both room temperature and 850 °C. The material was annealed at 1100, 1200, or 1400 °C for 10 min and characterized by secondary ion mass spectrometry, Rutherford backscattering (RBS), photoluminescence, Hall and capacitance-voltage measurement techniques. For both Al and B implants, the implant species was gettered at 0.7 Rp (where Rp is the projected range) in samples implanted at 850 °C and annealed at 1400 °C. In the samples that were amorphized by the room temperature implantation, a distinct damage peak remained in the RBS spectrum even after 1400 °C annealing. For the samples implanted at 850 °C, which were not amorphized, the damage peak disappeared after 1400 °C annealing. P-type conduction is observed only in samples implanted by Al at 850 °C and annealed at 1400 °C in Ar, with 1% dopant electrical activation. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 72 (1998), S. 1086-1088 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the process of thin film separation by gas ion implantation and wafer bonding, as well as the more basic phenomenon of blistering, on which the technique is based. We show that when H and He gas implants are combined they produce a synergistic effect which enables thin-film separation at a much lower total implantation dose than that required for either H or He alone. By varying the H and He implantation doses we have been able to isolate the physical and chemical contributions of the gases to the blistering processes. We find that the essential role of H is to interact chemically with the implantation damage and create H-stabilized platelet-like defects, or microvoids. The efficiency of H in this action is linked to its effective lowering of the silicon internal surface energy. The second key component of the process is physical; it consists of diffusion of gas into the microvoids and gas expansion during annealing, which drives growth and the eventual intersection of the microvoids to form two continuous separable surfaces. He is more efficient than H for this process since He does not become chemically trapped at broken bonds and thus segregates into microvoids more readily. In particular, we have demonstrated that a 1×1016 cm−2 He dose in combination with a 7.5×1015 cm−2 H dose are sufficient to shear and transfer a thin silicon film onto a handle wafer after bonding the two wafers together. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 68 (1996), S. 3725-3727 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The optical beam induced current (OBIC) technique was applied using a scanning optical microscope (SOM) to study n-Cds/p-CdTe thin film solar cells which had been subjected to different post-deposition treatments. High spatial resolution maps were obtained of the current collection with and without an applied reverse bias. The quantum efficiency of the devices was also measured with high spatial resolution. The results both quantify and illustrate vividly the manner in which the well known CdCl2 treatment increases collection efficiency. The high uniformity in the best cells indicates that grain boundaries do not play a substantial role in limiting collection efficiency. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 66 (1995), S. 1892-1894 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Damage accumulation during high-dose oxygen implantation of Si to form a silicon-on-insulator material can deleteriously affect the quality of the material. In particular, dislocations formed in the superficial silicon layer are difficult to anneal, requiring temperatures near the melting point of Si to reduce their density to acceptable levels. A technique to suppress the formation of these dislocations during irradiation is presented. The success of this technique lies in its ability to interact with vacancy-type defects within the superficial layer whose accumulation precedes dislocation formation. A Si+ self-ion beam is used as a spatially specific tool to introduce Si atoms into the vicinity of these precursor defects prior to the onset of dislocation growth. The interaction of this beam with the precursor defects is shown to be effective in suppressing dislocation formation during subsequent O+ implantation. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We demonstrate single electron charging in fully controllable nanoscale quantum devices at temperatures above 4 K. Hitherto, single electron devices operating at "high'' temperatures have been two-terminal, having no control electrode, whereas fully tunable structures such as quantum dots have only shown charging effects at temperatures of 4 K or less. We have fabricated ultrasmall quantum dots on modulation doped heterostructures where the two-dimensional electron gas is less than 30 nm from the surface. Dots with lithographic diameter 150 nm show Coulomb oscillations up to temperatures of 7 K. Higher temperature operation allows potential applications to be considered without the need, for example, of a dilution fridge. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 66 (1995), S. 947-949 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Periodic arrays of 150 and 175 nm-wide GaAs–AlAs quantum wires and quantum dots were investigated, fabricated by electron beam lithography, and SiCl4/O2 reactive ion etching, by means of reciprocal space mapping using triple axis x-ray diffractometry. From the x-ray data the lateral periodicity of wires and dots, and the etch depth are extracted. The reciprocal space maps reveal that after the fabrication process the lattice constant along the growth direction slightly increases for the wires and even more so for the dots. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 74 (1999), S. 997-999 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: A method for preparing shallow dopant distributions via solid-phase epitaxial growth (SPEG) following amorphization by low-energy Si self-ion implantation leaves defects that can lead to unwanted dopant impurity diffusion. The double implant method for SPEG [O. W. Holland et al., J. Electron. Mater. 25, 99 (1996)] uses both low- and high-energy Si self-ion implantation to remove most of the interstitials. Nevertheless, we find that measurable crystalline imperfections remain following the SPEG annealing step. Measurements of defect profiles using variable-energy positron spectroscopy show that there are divacancy-impurity complexes in the SPEG layer and V6 and larger vacancy clusters near the SPEG-crystalline interface. These measurements should be useful for modeling the diffusion of dopant atoms and for fine tuning the double implant parameters. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...