ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Models, Molecular  (4)
  • *Anaphase
  • ASTROPHYSICS
  • Life Sciences (General)
  • American Association for the Advancement of Science (AAAS)  (5)
  • 1995-1999  (5)
  • 1980-1984
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (5)
Years
Year
  • 1
    Publication Date: 1995-08-11
    Description: In the molecular scheme of living organisms, adenosine 3',5'-monophosphate (cyclic AMP or cAMP) has been a universal second messenger. In eukaryotic cells, the primary receptors for cAMP are the regulatory subunits of cAMP-dependent protein kinase. The crystal structure of a 1-91 deletion mutant of the type I alpha regulatory subunit was refined to 2.8 A resolution. Each of the two tandem cAMP binding domains provides an extensive network of hydrogen bonds that buries the cyclic phosphate and the ribose between two beta strands that are linked by a short alpha helix. Each adenine base stacks against an aromatic ring that lies outside the beta barrel. This structure provides a molecular basis for understanding how cAMP binds cooperatively to its receptor protein, thus mediating activation of the kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Y -- Dostmann, W R -- Herberg, F W -- Durick, K -- Xuong, N H -- Ten Eyck, L -- Taylor, S S -- Varughese, K I -- GM07313/GM/NIGMS NIH HHS/ -- GM34921/GM/NIGMS NIH HHS/ -- RR01644/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1995 Aug 11;269(5225):807-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0654, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7638597" target="_blank"〉PubMed〈/a〉
    Keywords: Affinity Labels ; Amino Acid Sequence ; Binding Sites ; Carrier Proteins/*chemistry/genetics/metabolism ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/analogs & derivatives/*metabolism ; Cyclic AMP-Dependent Protein Kinases/*chemistry ; Enzyme Activation ; Hydrogen Bonding ; *Intracellular Signaling Peptides and Proteins ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-10-27
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉DeGrado, W F -- New York, N.Y. -- Science. 1997 Oct 3;278(5335):80-1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6059, USA. wdegrado@mail.med.upenn.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9340760" target="_blank"〉PubMed〈/a〉
    Keywords: *Algorithms ; Amino Acid Sequence ; Computer Simulation ; DNA-Binding Proteins/chemical synthesis/*chemistry ; Models, Molecular ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Tertiary ; Software ; Thermodynamics ; Transcription Factors/chemical synthesis/*chemistry ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1997-07-25
    Description: Chromosome movements and spindle dynamics were visualized in living cells of the budding yeast Saccharomyces cerevisiae. Individual chromosomal loci were detected by expression of a protein fusion between green fluorescent protein (GFP) and the Lac repressor, which bound to an array of Lac operator binding sites integrated into the chromosome. Spindle microtubules were detected by expression of a protein fusion between GFP and Tub1, the major alpha tubulin. Spindle elongation and chromosome separation exhibited biphasic kinetics, and centromeres separated before telomeres. Budding yeast did not exhibit a conventional metaphase chromosome alignment but did show anaphase A, movement of the chromosomes to the poles.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Straight, A F -- Marshall, W F -- Sedat, J W -- Murray, A W -- New York, N.Y. -- Science. 1997 Jul 25;277(5325):574-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Physiology, Box 0444, School of Medicine, University of California at San Francisco, San Francisco, CA 94143-0444, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9228009" target="_blank"〉PubMed〈/a〉
    Keywords: *Anaphase ; Bacterial Proteins/metabolism ; Centromere/chemistry/physiology ; Chromatids/physiology ; Chromosomes, Fungal/chemistry/*physiology ; *Escherichia coli Proteins ; Green Fluorescent Proteins ; Lac Repressors ; Luminescent Proteins ; *Metaphase ; Microscopy, Fluorescence ; Microtubules/ultrastructure ; *Mitosis ; Movement ; Operator Regions, Genetic ; Recombinant Fusion Proteins ; Repressor Proteins/metabolism ; Saccharomyces cerevisiae/*cytology ; Spindle Apparatus/physiology/ultrastructure ; Telomere/physiology ; Tubulin/analysis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1995-11-10
    Description: The de novo design of peptides and proteins has recently emerged as an approach for investigating protein structure and function. Designed, helical peptides provide model systems for dissecting and quantifying the multiple interactions that stabilize secondary structure formation. De novo design is also useful for exploring the features that specify the stoichiometry and stability of alpha-helical coiled coils and for defining the requirements for folding into structures that resemble native, functional proteins. The design process often occurs in a series of discrete steps. Such steps reflect the hierarchy of forces required for stabilizing tertiary structures, beginning with hydrophobic forces and adding more specific interactions as required to achieve a unique, functional protein.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bryson, J W -- Betz, S F -- Lu, H S -- Suich, D J -- Zhou, H X -- O'Neil, K T -- DeGrado, W F -- New York, N.Y. -- Science. 1995 Nov 10;270(5238):935-41.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉DuPont Merck Pharmaceutical Company, Wilmington, DE 19880, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7481798" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Crystallography, X-Ray ; DNA-Binding Proteins/chemistry ; Hydrogen Bonding ; Models, Molecular ; Molecular Sequence Data ; *Protein Conformation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Thermodynamics ; Zinc Fingers
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-06-14
    Description: DnaK and other members of the 70-kilodalton heat-shock protein (hsp70) family promote protein folding, interaction, and translocation, both constitutively and in response to stress, by binding to unfolded polypeptide segments. These proteins have two functional units: a substrate-binding portion binds the polypeptide, and an adenosine triphosphatase portion facilitates substrate exchange. The crystal structure of a peptide complex with the substrate-binding unit of DnaK has now been determined at 2.0 angstroms resolution. The structure consists of a beta-sandwich subdomain followed by alpha-helical segments. The peptide is bound to DnaK in an extended conformation through a channel defined by loops from the beta sandwich. An alpha-helical domain stabilizes the complex, but does not contact the peptide directly. This domain is rotated in the molecules of a second crystal lattice, which suggests a model of conformation-dependent substrate binding that features a latch mechanism for maintaining long lifetime complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, X -- Zhao, X -- Burkholder, W F -- Gragerov, A -- Ogata, C M -- Gottesman, M E -- Hendrickson, W A -- GM 34102/GM/NIGMS NIH HHS/ -- GM 37219/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1606-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658133" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chaperonins/chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli ; *Escherichia coli Proteins ; HSP70 Heat-Shock Proteins/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Peptides/metabolism ; Protein Binding ; Protein Conformation ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...