ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Protein Conformation  (5)
  • American Association for the Advancement of Science (AAAS)  (5)
  • American Institute of Physics
  • 1995-1999  (2)
  • 1990-1994  (3)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (5)
  • American Institute of Physics
Years
Year
  • 1
    Publication Date: 1995-08-11
    Description: In the molecular scheme of living organisms, adenosine 3',5'-monophosphate (cyclic AMP or cAMP) has been a universal second messenger. In eukaryotic cells, the primary receptors for cAMP are the regulatory subunits of cAMP-dependent protein kinase. The crystal structure of a 1-91 deletion mutant of the type I alpha regulatory subunit was refined to 2.8 A resolution. Each of the two tandem cAMP binding domains provides an extensive network of hydrogen bonds that buries the cyclic phosphate and the ribose between two beta strands that are linked by a short alpha helix. Each adenine base stacks against an aromatic ring that lies outside the beta barrel. This structure provides a molecular basis for understanding how cAMP binds cooperatively to its receptor protein, thus mediating activation of the kinase.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Su, Y -- Dostmann, W R -- Herberg, F W -- Durick, K -- Xuong, N H -- Ten Eyck, L -- Taylor, S S -- Varughese, K I -- GM07313/GM/NIGMS NIH HHS/ -- GM34921/GM/NIGMS NIH HHS/ -- RR01644/RR/NCRR NIH HHS/ -- New York, N.Y. -- Science. 1995 Aug 11;269(5225):807-13.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla 92093-0654, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7638597" target="_blank"〉PubMed〈/a〉
    Keywords: Affinity Labels ; Amino Acid Sequence ; Binding Sites ; Carrier Proteins/*chemistry/genetics/metabolism ; Computer Graphics ; Crystallization ; Crystallography, X-Ray ; Cyclic AMP/analogs & derivatives/*metabolism ; Cyclic AMP-Dependent Protein Kinases/*chemistry ; Enzyme Activation ; Hydrogen Bonding ; *Intracellular Signaling Peptides and Proteins ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1992-02-21
    Description: A class of regulators of eukaryotic gene expression contains a conserved amino acid sequence responsible for protein oligomerization and binding to DNA. This structure consists of an arginine- and lysine-rich basic region followed by a helix-loop-helix motif, which together mediate specific binding to DNA. Peptides were prepared that span this motif in the MyoD protein; in solution, they formed alpha-helical dimers and tetramers. They bound to DNA as dimers and their alpha-helical content increased on binding. Parallel and antiparallel four-helix models of the DNA-bound dimer were constructed. Peptides containing disulfide bonds were engineered to test the correctness of the two models. A disulfide that is compatible with the parallel model promotes specific interaction with DNA, whereas a disulfide compatible with the antiparallel model abolishes specific binding. Electron paramagnetic resonance (EPR) measurements of nitroxide-labeled peptides provided intersubunit distance measurements that also supported the parallel model.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Anthony-Cahill, S J -- Benfield, P A -- Fairman, R -- Wasserman, Z R -- Brenner, S L -- Stafford, W F 3rd -- Altenbach, C -- Hubbell, W L -- DeGrado, W F -- GM13731/GM/NIGMS NIH HHS/ -- GM14321/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1992 Feb 21;255(5047):979-83.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Biotechnology Department, DuPont Merck Pharmaceutical Co., Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1312255" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Binding Sites ; Circular Dichroism ; DNA-Binding Proteins/*chemistry ; Disulfides ; Electron Spin Resonance Spectroscopy ; Enhancer Elements, Genetic ; Gene Expression Regulation ; Humans ; Models, Molecular ; Molecular Sequence Data ; Protein Conformation ; Regulatory Sequences, Nucleic Acid ; Sequence Alignment ; Transcription Factors/*chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1990-08-17
    Description: A class of transcriptional regulator proteins bind to DNA at dyad-symmetric sites through a motif consisting of (i) a "leucine zipper" sequence that associates into noncovalent, parallel, alpha-helical dimers and (ii) a covalently connected basic region necessary for binding DNA. The basic regions are predicted to be disordered in the absence of DNA and to form alpha helices when bound to DNA. These helices bind in the major groove forming multiple hydrogen-bonded and van der Waals contacts with the nucleotide bases. To test this model, two peptides were designed that were identical to natural leucine zipper proteins only at positions hypothesized to be critical for dimerization and DNA recognition. The peptides form dimers that bind specifically to DNA with their basic regions in alpha-helical conformations.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉O'Neil, K T -- Hoess, R H -- DeGrado, W F -- New York, N.Y. -- Science. 1990 Aug 17;249(4970):774-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Research and Development Department, E.I. du Pont de Nemours & Co., Wilmington, DE 19880-0328.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2389143" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding Sites ; Chemistry, Physical ; Circular Dichroism ; Computer Simulation ; DNA/*metabolism ; DNA-Binding Proteins/*metabolism ; Hydrogen Bonding ; *Leucine ; Macromolecular Substances ; Models, Molecular ; Molecular Sequence Data ; Physicochemical Phenomena ; Protein Conformation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1990-09-07
    Description: A protein crystal structure is usually described by one single structure, which largely omits the dynamical behavior of the molecule. A molecular dynamics method with a time-averaged crystallographic restraint was used to overcome this limitation. This method yields an ensemble of structures in which all possible thermal motions are allowed, that is, in additional to isotropic distributions, anisotropic and anharmonic positional distributions occur as well. In the case of bovine pancreatic phospholipase A2, this description markedly improves agreement with the observed x-ray diffraction data compared to the results of the classical one-model structure description. Time-averaged crystallographically restrained molecular dynamics reveals large mobilities in the loops involved in lipid bilayer association.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gros, P -- van Gunsteren, W F -- Hol, W G -- New York, N.Y. -- Science. 1990 Sep 7;249(4973):1149-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉BIOSON Research Institute, University of Groningen, The Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2396108" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cattle ; Crystallography ; Hot Temperature ; Models, Molecular ; Motion ; *Phospholipases ; *Phospholipases A ; Phospholipases A2 ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1996-06-14
    Description: DnaK and other members of the 70-kilodalton heat-shock protein (hsp70) family promote protein folding, interaction, and translocation, both constitutively and in response to stress, by binding to unfolded polypeptide segments. These proteins have two functional units: a substrate-binding portion binds the polypeptide, and an adenosine triphosphatase portion facilitates substrate exchange. The crystal structure of a peptide complex with the substrate-binding unit of DnaK has now been determined at 2.0 angstroms resolution. The structure consists of a beta-sandwich subdomain followed by alpha-helical segments. The peptide is bound to DnaK in an extended conformation through a channel defined by loops from the beta sandwich. An alpha-helical domain stabilizes the complex, but does not contact the peptide directly. This domain is rotated in the molecules of a second crystal lattice, which suggests a model of conformation-dependent substrate binding that features a latch mechanism for maintaining long lifetime complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhu, X -- Zhao, X -- Burkholder, W F -- Gragerov, A -- Ogata, C M -- Gottesman, M E -- Hendrickson, W A -- GM 34102/GM/NIGMS NIH HHS/ -- GM 37219/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1996 Jun 14;272(5268):1606-14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biophysics, College of Physicians and Surgeons, Columbia University, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8658133" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Chaperonins/chemistry/*metabolism ; Crystallography, X-Ray ; Escherichia coli ; *Escherichia coli Proteins ; HSP70 Heat-Shock Proteins/chemistry/*metabolism ; Models, Molecular ; Molecular Sequence Data ; Peptides/metabolism ; Protein Binding ; Protein Conformation ; Sequence Homology, Amino Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...