ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Triticum aestivum  (97)
  • Springer  (97)
  • 1995-1999  (33)
  • 1990-1994  (43)
  • 1980-1984  (21)
  • 1960-1964
Collection
Publisher
  • Springer  (97)
Years
Year
  • 1
    ISSN: 1573-1561
    Keywords: Cover crops ; wheat ; Triticum aestivum ; soybean ; Glycine max ; soil extracts ; germination bioassays ; phenolic acids ; hydroxamic acids ; allelopathy ; slope analysis ; ivy-leaved morning glory ; Ipomoea hederacea ; crimson clover ; Trifolium incarnalum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract The primary objective of this research was to determine if soil extracts could be used directly in bioassays for the detection of allelopathic activity. Here we describe: (1) a way to estimate levels of allelopathic compounds in soil; (2) how pH, solute potential, and/or ion content of extracts may modify the action of allelopathic compounds on germination and radicle and hypocotyl length of crimson clover (Trifolium incarnatum L.) and ivyleaved morning glory (Ipomoea hederacea L. Jacquin.); and (3) how biological activity of soil extracts may be determined. A water-autoclave extraction procedure was chosen over the immediate-water and 5-hr EDTA extraction procedures, because the autoclave procedure was effective in extracting solution and reversibly bound ferulic acid as well as phenolic acids from wheat debris. The resulting soil extracts were used directly in germination bioassays. A mixture of phenolic acids similar to that obtained from wheat-no-till soils did not affect germination of clover or morning glory and radicle and hypocotyl length of morning glory. The mixture did, however, reduce radicle and hypocotyl length of clover. Individual phenolic acids also did not inhibit germination, but did reduce radicle and hypocotyl length of both species. 6-MBOA (6-methoxy-2,3-benzoxazolinone), a conversion product of 2-o-glucosyl-7-methoxy-1,4-benzoxazin-3-one, a hydroxamic acid in living wheat plants, inhibited germination and radicle and hypocotyl length of clover and morning glory. 6-MBOA, however, was not detected in wheat debris, stubble, or soil extracts. Total phenolic acids (FC) in extracts were determined with Folin and Ciocalteu's phenol reagent. Levels of FC in wheat-conventionaltill soil extracts were not related to germination or radicle and hypocotyl length of either species. Levels of FC in wheat-no-till soil extracts were also not related to germination of clover or morning glory, but were inversely related to radicle and hypocotyl length of clover and morning glory. FC values, solute potential, and acidity of wheat-no-till soil extracts appeared to be independent (additive) in action on clover radicle and hypocotyl length. Radicle and hypocotyl length of clover was inversely related to increasing FC and solute potential and directly related to decreasing acidity. Biological activity of extracts was determined best from slopes of radicle and hypocotyl length obtained from bioassays of extract dilutions. Thus, data derived from the water-autoclave extraction procedure, FC analysis, and slope analysis for extract activity in conjunction with data on extract pH and solute potential can be used to estimate allelopathic activity of wheat-no-till soils
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: aluminium ; electron microscope ; light microscope ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Root tips from aluminium (Al) tolerant (Waalt) and Al sensitive (Warigal) wheat (Triticum aestivum (L). Thell.) cultivars exposed to low concentrations of Al (10 μM) for 10, 24 and 72 hours were examined under the light and electron microscope. After fixing and embedding, longitudinal and transverse thin and ultrathin sections were cut. There was no evidence of Al damage to the root tips of the Al tolerant cultivar under both the light and electron microscope. For the Al sensitive cultivar, Al had no observable effect on the root tips 10 hours after Al addition when examined under the light microscope. When examined under an electron microscope, electron dense globular deposits were observed between the cell wall and cell membrane of the epidermal cells. There was not obvious damage to the cell cytoplasm. Two or 3 days after Al addition, light microscopy showed that the cells in the root tips had become swollen and extensively vacuolated. The tissues appeared disorganised and degenerate, particularly in the epidermis and outer cortical cells. The electron microscope also revealed a thickening of the cell wall. The cell wall was broken down, particularly in the epidermis in the region 4–6 mm from the root tip. The tissue in the meristematic area was largely intact.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Lignin ; Manganese ; NO 3 − Phenols ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary Managanese deficiency (〈 18 μg g−1 Mn) resulted in decreased levels of phenols in wheat shoots and decreased levels of lignins in both roots and shoots. These observed reductions in phenol contents was due largely to a decrease in the alkaline labile phenol component. Levels of nitrate supplied in solution influenced both phenol and lignin production; high nitrate levels (15 mM) resulted in a reduction in phenol and lignin in the shoot but stimulated lignin production in root tissue.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 90 (1995), S. 1158-1163 
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; Puccinia graminis ; Aneuploid ; Cytogenetics ; Monosomics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The chromosomal locations of genes for resistance to stem rust (Puccinia graminis Pers.: Pers. f. sp. tritici Eriks. & E. Henn.) in the wheat (Triticum aestivum L.) cultivar ‘Waldron’ (WDR) were determined by monosomic analyses. Wheat lines WDR-B1, -C2, -E4, and -F1,which have single genes for resistance to stem rust derived previously from WDR sel. ‘Little Club’, were crossed onto a complete set of 21 ‘Chinese Spring’ monosomics. The F2 and backcross-F1 (BC1F1) seedlings from each of the 84 crosses were tested for reaction to culture 111-SS2 (CRL-LCBB) of stem rust, and a few selected segregants were analyzed cytologically for chromosome number. The F2 from 2 crosses of WDR-C2, -E4 and -F1 and the BC1F1 from 2 crosses of WDR-F1 were tested also with culture Or11c (CRL-QBCN). Significant deviations from disomic ratios towards monosomic ratios in the F2 and BC1F1 were used to determine which chromosomes carried the genes for resistance. Cytological analyses of certain BC1F1 and susceptible F2 plants were used to help identify the location of the genes for rust resistance. WDR-B1 has a gene, herein designated Sr41, for resistance on chromosome 4D. WDR-C2 has a gene on chromosome 7 A that may be the same as one previously designated SrWld2. WDR-E4 has a gene on chromosome 2A, possibly SrWld1, which is effective against most or all North American stem rust cultures. WDR-F1 has a gene on chromosome 6B that is the same as or similar to Sr11.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-2242
    Keywords: Key words Aegilops tauschii ; Triticum aestivum ; Genetic mapping ; Molecular markers ; Agronomically important genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  Aegilops tauschii is the diploid D-genome progenitor of bread wheat (Triticum aestivum L. em Thell, 2n=6x=42, AABBDD). A genetic linkage map of the Ae. tauschii genome was constructed, composed of 546 loci. One hundred and thirty two loci (24%) gave distorted segregation ratios. Sixty nine probes (13%) detected multiple copies in the genome. One hundred and twenty three of the 157 markers shared between the Ae. tauschii genetic and T. aestivum physical maps were colinear. The discrepancy in the order of five markers on the Ae. tauschii 3DS genetic map versus the T. aestivum 3D physical map indicated a possible inversion. Further work is needed to verify the discrepancies in the order of markers on the 4D, 5D and 7D Ae. tauschii genetic maps versus the physical and genetic maps of T. aestivum. Using common markers, 164 agronomically important genes were assigned to specific regions on Ae. tauschii linkage, and T. aestivum physical, maps. This information may be useful for map-based cloning and marker-assisted plant breeding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-2242
    Keywords: HMW glutenin subunit genes ; cDNA clones ; Tandem DNA repeats ; Chromosomal location ; Gene copy number ; Wheat ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary cDNA clones encoding wheat HMW glutenin subunits have been isolated from a cDNA bank made to poly A+ RNA from developing wheat endosperm var. Chinese Spring. One such clone, pTag 1290, has enabled us to identify the HMW glutenin mRNA species. The DNA sequence of this clone has been partially determined and it contains several tandem DNA repeats. The sequence is discussed in relation to the generation of the HMW glutenin subunit gene family. Analysis of the organization of the HMW glutenin sequences in the wheat genome revealed that the genes encoding HMW glutenin subunits exist in low copy number and are located on the long arm of each of the homoeologous group 1 chromosomes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical and applied genetics 90 (1995), S. 1164-1168 
    ISSN: 1432-2242
    Keywords: Triticum aestivum ; Puccinia graminis ; Allelism ; Inheritance ; Segregation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Triticum aestivum L. cultivar ‘Waldron’ has long lasting resistance to most North American stem rust (Puccinia graminis Pers.:Pers. f. sp. tritici Eriks. and E. Henn.) isolates. The objective of this research was to develop wheat lines monogenic for resistance to stem rust from ‘Waldron’ using allelism tests and tests for reaction to a series of ten stem rust cultures having a range of virulences. Twelve lines homozygous for single resistance genes were selected as parents of a diallel cross to test for allelism among genes for resistance. We identified 6 lines or groups of lines (WDR-A1, the WDR-B1 and WDR-B2 group, the WDR-C1 and WDR-C2 group, WDR-D1, the WDR-E1, WDR-E2, WDR-E3, and WDR-E4 group, and WDR-F1) that carried different single genes for resistance from ‘Waldron’. A seventh line (WDR-G1) probably has two genes for resistance, one in common with WDR-C1 and WDR-C2. The gene in the WDR-E group is probably the same as SrWld1, and the one in WDR-F1 the same as Sri11. ‘Waldron’ probably has two or more genes for resistance to stem rust that previous genetic studies did not detect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1573-5036
    Keywords: Gaeumannomyces graminis ; genotypes ; interaction ; manganese ; oxidation ; take-all ; Triticum aestivum ; wheat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Take-all is a world-wide root-rotting disease of cereals. The causal organism of take-all of wheat is the soil-borne fungus Gaeumannomyces graminis var tritici (Ggt). No resistance to take-all, worthy of inclusion in a plant breeding programme, has been discovered in wheat but the severity of take-all is increased in host plants whose tissues are deficient for manganese (Mn). Take-all of wheat will be decreased by all techniques which lift Mn concentrations in shoots and roots of Mn-deficient hosts to adequate levels. Wheat seedlings were grown in a Mn-deficient calcareous sand in small pots and inoculated with four field isolates of Ggt. Infection by three virulent isolates was increased under conditions which were Mn deficient for the wheat host but infection by a weakly virulent isolate, already low, was further decreased. Only the three virulent isolates caused visible oxidation of Mn in vitro. The sensitivity of Ggt isolates to manganous ions in vitro did not explain the extent of infection they caused on wheat hosts. In a similar experiment four Australian wheat genotypes were grown in the same Mn-deficient calcareous sand and inoculated with one virulent isolate of Ggt. Two genotypes were inefficient at taking up manganese and were very susceptible to take-all, one was very efficient at taking up manganese and was resistant to take-all, and the fourth genotype was intermediate for both characters. All genotypes were equally resistant under Mn-adequate conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 155-156 (1993), S. 489-492 
    ISSN: 1573-5036
    Keywords: aluminium ; analog ; boron ; copper ; gallium ; iron ; lanthanum ; manganese ; scandium ; tolerance ; Triticum aestivum ; toxicity ; wheat ; zinc
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of aluminium (Al), manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga), scandium (Sc) and lanthanum (La) on growth of an Al-tolerant and an Al-sensitive line of wheat (Triticum aestivum L.) were measured in solution culture. The concentrations of nutrients in the basal nutrient solution were (μM) 500 Ca, 100 Mg, 300 K, 600 N (150 NH4, 450 NO3), 600 SO4, 2.5 P, 3 B, 2.5 Fe, 0.5 Zn, 0.5 Mn, 0.1 Cu at a pH of 4.7. The major solution nutrient concentrations were maintained at the nominal concentration with monitoring, frequent additions and weekly renewal. Differentiation in yield between the Al-tolerant and Al-sensitive line only occurred in the presence of Al indicating that, in the long term, none of the other metals tested could be used as an analog for Al. The visual symptoms in the roots of Cu toxicity (in both lines) and Al toxicity (in the sensitive line) were similar. The solution concentration (μM) at which yield of the roots of the tolerant line was reduced by 50% was, in order of increasing tolerance, Cu 0.5, Sc 1.1, La 7.1, Ga 8.6, Al 15, Zn 19, Fe 84, B 490 and Mn 600.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-5060
    Keywords: Aegilops spp. ; alien introgression ; aneuploidy ; cytogenetics ; history ; Plant Breeding Institute of the University Halle ; Secale cereale ; Triticum aestivum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Summary The historical development of cytogenetic research in cereals performed at the Plant Breeding Institute of the Martin-Luther-University Halle-Wittenberg from its beginning in 1935 until 1992 is reviewed with special reference to polyploidy, alien introgression and aneuploidy. Th. Roemer founded 1935 in the framework of his Institute a Department of Mutation Research which, in 1937, was extended to a Department of Cytogenetics with R. Freisleben as the first head. Research highlights of this period were the introduction of mutation breeding, the development of autotetraploids in barley and linseed, the discovery of the crossability genes in wheat and the performance of wheat-rye crosses. The main objective in the period between 1950–1960 was the analysis of the relationships between chromosome behaviour and seed set in tetraploid rye and octoploid triticale. Since 1961 the Cytogenetics Research Group was headed by D. Mettin; he was followed by W.D. Blüthner in 1983. The research activities in this period concerning aneuploidy in rye and wheat and alien introgression are being reviewed under the following headings: Cytogenetics of rye; work with wheat aneuploids; contributions to the IR introgression into wheat; alien introgressions into wheat to improve disease resistance and grain quality; the exploitation of molecular markers.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...