ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2000-04-01
    Description: Four simple measures of interspecific competition (percent cover visually estimated in the field, percent cover derived from hemispherical photographs, percent full sunlight measured by a ceptometer, and gap light index derived from hemispherical photographs) obtained at two reference positions (the top and the middle of crop seedlings) were evaluated in relation to two growth variables (relative height growth rates in 1998 and during 1996 to 1998) of black spruce (Picea mariana (Mill.) BSP) seedlings planted on boreal mixedwood sites in southeastern Manitoba. The four competition measures assessed at the two measuring positions explained 57.2-68.0% of the total variation in black spruce height growth rate. Significant relationships were found among the four measures, and between the two measuring positions for each measure. The measuring position was not critical for all competition measures except the percent full sunlight measured by the ceptometer, for which the middle position was much better. When assessed at their preferred positions, the four competition measures ranked as follows: (i) percent cover derived from hemispherical photographs or percent full sunlight measured by the ceptometer; (ii) gap light index derived from hemispherical photographs; and (iii) visually estimated percent cover of vegetation.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-07-01
    Print ISSN: 0148-0227
    Electronic ISSN: 2156-2202
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2003-11-19
    Print ISSN: 0048-6604
    Electronic ISSN: 1944-799X
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-05-17
    Description: Results of the first science flight of the airborne Conical Scanning Millimeter-wave Imaging Radiometer (CoSMIR) for high-altitude observations from the NASA ER-2 is discussed. Imagery collected from the flight demonstrates CoSMIR's unique conical/cross-track imaging mode and provides comparison of CoSMIR measurements to those of the Special Sensor Microwave/Temperature-2 (SSM/T-2) satellite radiometer.
    Keywords: Instrumentation and Photography
    Type: International Geoscience and Remote Sensing Symposium (IGARSS); United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: This paper presents the first and the only simultaneous measurements of water vapor by MIR (Millimeter-wave Imaging Radiometer) and LASE (Lidar Atmospheric Sounding Experiment) on board the same ER-2 aircraft. Water vapor is one of the most important constituents in the Earth's atmosphere, as its spatial and temporal variations affect a wide spectrum of meteorological phenomena ranging from the formation of clouds to the development of severe storms. Its concentration, as measured in terms of relative humidity, determines the extinction coefficient of atmospheric aerosol particles and therefore visibility. These considerations point to the need for effective and frequent measurements of the atmospheric water vapor. The MIR and LASE instruments provide measurements of water vapor profiles with two markedly different techniques. LASE can give water vapor profiles with excellent vertical resolution under clear condition, while MIR can retrieve water vapor profiles with a crude vertical resolution even under a moderate cloud cover. Additionally, millimeter-wave measurements are relatively simple and provide better spatial coverage.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-17
    Description: During the TRMM-LBA (Tropical Rainfall Measuring Mission - Large-Scale Biosphere-Atmosphere Experiment in Amazonia) field campaign of January - February 1999, EDOP (ER-2 Doppler Radar), AMPR (Advanced Microwave Precipitation Radiometer), and MIR (Millimeter-wave Imaging Radiometer) on board the NASA ER-2 aircraft made a number of flights over the same Amazon area for studies of precipitation signatures. It is generally perceived that AMPR, with measurements at the frequencies of 10.7, 19.35, 37.0, and 85 GHz, is not sensitive to precipitation over land; a possible exception is detection through electromagnetic wave scattering at 85 GHz by frozen hydrometeors aloft above the freezing level. Analysis of the combined data sets from these instruments shows that, in the Amazon highly forested areas where the surface emissivity is high and uniform, direct detection of rain by a radiometer at frequencies less than or equal to 37 GHz is possible. The detection of rain is reflected by a depression in brightness temperature, which amounts to as much as 20 K at 19.35 GHz. Measurements at higher frequencies by the MIR help delineate the regions of scattering signatures above the freezing level. Implications of the combined wideband measurements from AMPR and MIR will be discussed.
    Keywords: Meteorology and Climatology
    Type: Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-18
    Description: The first copy of the SSMIS (Special Sensor Microwave/Imager/Sounder) was launched on board the DMSP (Defense Meteorological Satellite Project) F-16 satellite in October 2003. During March-April 2004, six 5-hour SSMIS under-flights were conducted with the CoSMIR on board the NASA ER-2 aircraft over the coastal region of California. CoSMIR has nine channels at the frequencies of 50.3, 52.8, 53.6, 91.665 (V and H polarization), 150, 183.3+/-1, 183.3+/-3, and 183.3+/-6.6 GHz. All except the two 91.665 GHz channels are horizontally polarized. The instrument was carefully calibrated with LN2 target in the laboratory before the flights. Three of the aircraft flights passed over Lakes Pyramid and Tahoe that could be used to validate the in-flight sensor calibration. Immediately after these flights, an inter-comparison of the calibrated SSMIS and CoSMIR brightness temperatures (T(sub b)) followed. The results showed that, for channels at frequencies 〉 or equal to 91.665 GHz, the SSMIS and CoSMIR T(sub b) values tracked each other very well; for some channels there were some bias with magnitude generally less than 3-4 K (SSMIS values were higher). For the three 50-54 GHz channels, the SSMIS T(sub b) values were higher and frequency-dependent. For the least opaque channel at 50.3 GHz, the SSMIS T(sub b)'s over the ocean surface were higher than those of CoSMIR by more than 20 K under the clear-sky conditions. The most plausible explanation for this to happen is to assume that the 50-54 GHx channels of the SSMIS are vertically polarized. This assumption appears to be consistent with independent radiative transfer calculations. Attempts to estimate vertically polarized radiometric responses for 50-54 GHz channels of the SSMIS based on the CoSMIR observations are not plausible and results not reliable because of the highly variable ocean surface conditions (e.g., wind-induced emissivity changes). A conversion of the CoSMIR 50-54 GHz channels from horizontal to vertical polarization, and a subsequent repetition of the SSMIS under-flights are the right approach for the calibration/validation of the 50-54 GHz channels of the SSMIS. Details of the SSMIS-CoSMIR inter-comparison will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: Specail Sensor Microwave/Imager/Sounder (SSMIS) Calibration/Validation Meeting; Jun 28, 2004 - Jun 30, 2004; Los Angeles, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: In this paper we explore the application of combined millimeter-wave radar and radiometry to remotely measure snowfall. During January-February of 2003, a field campaign was conducted with the NASA P-3 aircraft in Wakasa Bay, Japan for the validation of the AMSRE microwave radiometer on board the Aqua satellite. Among the suite of instruments-on board the P-3 aircraft were the Millimeter-wave Imaging Radiometer (MIR) from the NASA Goddard Space Flight Center and the 94 GHz Airborne Cloud Radar (ACR) which is co-owned and operated by NASA Jet Propulsion Laboratory/University of Massachusetts. MIR is a total power, across-track scanning radiometer that measures radiation at the frequencies of 89, 150, 183.3 +/- 1, 183.3 +/- 3, 183.3 +/-7, 220, and 340 GHz. The MIR has flown many successful missions since its completion in May 1992. ACR is a newer instrument and flew only a few times prior to the Wakasa Bay deployment. These two instruments which are particularly well suited for the detection of snowfall functioned normally during flights over snowfall and excellent data sets were acquired. On January 14, 28, and 29 flights were conducted over snowfall events. The MIR and ACR detected strong signals during periods of snowfall over ocean and land. Results from the analysis of these concurrent data sets show that (1) the scattering of millimeter-wave radiation as detected by the MIR is strongly correlated with ACR radar reflectivity profiles, and (2) the scattering is highly frequency-dependent, the higher the frequency the stronger the scattering. Additionally, the more transparent channels of the MIR (e.g., 89, 150, and 220 GHz) are found to display ambiguous signatures of snowfall because of their exposure to surface features. Thus, the snowfall detection and retrievals of snowfall parameters, such as the ice water path (IWP) and median mass diameter (D(me)) are best conducted at the more opaque channels near 183.3 GHz and 340 GHz. Retrievals of IWP and D(me) using the MIR measurements at 183.3 and 340 GHZ are currently in progress, and the results will be compared with those derived from the ACR reflectivity profiles. Implication from this comparison will be discussed.
    Keywords: Earth Resources and Remote Sensing
    Type: IGARSS 2004; Sep 20, 2004 - Sep 24, 2004; Anchorage, AK; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: Water vapor is one of the most important atmospheric constituents that has a critical impact on cloud formation (ice or liquid). It is also a source that needs to be accounted for in remote measurements of surface parameters. In the high-latitude regions, e.g., Antarctica, monitoring of the state of water vapor and its transport into and out of these regions is important towards our understanding the state of balance of ice sheets and its effect on the global sea level. The technique of retrieving low amount of column water vapor using the millimeter-wave radiometric measurements, as presented in this paper, will be very useful for these regions, especially during winter times when the atmosphere is relatively dry.
    Keywords: Meteorology and Climatology
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: A rich dataset was obtained with observations from the MIR (Millimeter-wave Imaging Radiometer, 89, 150, 183.3$\pm$1, 183.3$\pm$3,183.3$\pm$7, and 220 apprx.GHz), the AMPR (Advanced Microwave Precipitation Radiometer, 10.7, 19.35, 37, and 85 approx. GHz), and the EDOP (ER-2 Doppler Radar, 9.6 approx. GHz) on board the ER-2 aircraft during the CAMEX-3/TEFLUN-B (Convection and Moisture Experiment/Texas and Florida Underflights) TRMM (Tropical Rainfall Measuring Mission) field campaign. Measurements over the ocean from these three instruments on 26 August 1998 were used in our iterative retrieval algorithm to estimate hydrometeor drop size profiles, The algorithm attempts to minimize the difference between the observations and forward radiometer and radar calculations based on the estimated profile. The high frequency MIR observations provide detailed information about the high altitude ice microphysics, while the AMPR is mostly used to define liquid hydrometeor characteristics. The EDOP provides an initial estimate of the profile and as a consistency check throughout the iterative cycle. The retrieval algorithm, specific results for convective and anvil cases, and general implications of this work will be presented.
    Keywords: Earth Resources and Remote Sensing
    Type: Dec 15, 2000 - Dec 19, 2000; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...