ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • American Association of Petroleum Geologists (AAPG)
  • Copernicus
  • 2000-2004  (1,337)
  • 1
    Publication Date: 2001-09-30
    Description: On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Green-land between 13:00 and 14:00 UT. During that interval, a sudden reorganisation of the high-latitude dayside convection pattern occurred after 13:20 UT, most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Söndre Strömfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.Key words. Magnetospheric cusp, ionosphere, reconnection, convection flow-channel, Cluster, ground-based observations
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-09-30
    Description: On board the four Cluster spacecraft, the Cluster Ion Spectrometry (CIS) experiment measures the full, three-dimensional ion distribution of the major magnetospheric ions (H+, He+, He++, and O+) from the thermal energies to about 40 keV/e. The experiment consists of two different instruments: a COmposition and DIstribution Function analyser (CIS1/CODIF), giving the mass per charge composition with medium (22.5°) angular resolution, and a Hot Ion Analyser (CIS2/HIA), which does not offer mass resolution but has a better angular resolution (5.6°) that is adequate for ion beam and solar wind measurements. Each analyser has two different sensitivities in order to increase the dynamic range. First tests of the instruments (commissioning activities) were achieved from early September 2000 to mid January 2001, and the operation phase began on 1 February 2001. In this paper, first results of the CIS instruments are presented showing the high level performances and capabilities of the instruments. Good examples of data were obtained in the central plasma sheet, magnetopause crossings, magnetosheath, solar wind and cusp measurements. Observations in the auroral regions could also be obtained with the Cluster spacecraft at radial distances of 4–6 Earth radii. These results show the tremendous interest of multispacecraft measurements with identical instruments and open a new area in magnetospheric and solar wind-magnetosphere interaction physics.Key words. Magnetospheric physics (magnetopause, cusp and boundary layers; magnetopheric configuration and dynamics; solar wind - magnetosphere interactions)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-01-01
    Description: We advance the achievements of Interball-1 and other contemporary missions in exploration of the magnetosheath-cusp interface. Extensive discussion of published results is accompanied by presentation of new data from a case study and a comparison of those data within the broader context of three-year magnetopause (MP) crossings by Interball-1. Multi-spacecraft boundary layer studies reveal that in ∼80% of the cases the interaction of the magnetosheath (MSH) flow with the high latitude MP produces a layer containing strong nonlinear turbulence, called the turbulent boundary layer (TBL). The TBL contains wave trains with flows at approximately the Alfvén speed along field lines and "diamagnetic bubbles" with small magnetic fields inside. A comparison of the multi-point measurements obtained on 29 May 1996 with a global MHD model indicates that three types of populating processes should be operative: large-scale (∼few RE) anti-parallel merging at sites remote from the cusp; medium-scale (few thousandkm) local TBL-merging of fields that are anti-parallel on average; small-scale (few hundredkm) bursty reconnection of fluctuating magnetic fields, representing a continuous mechanism for MSH plasma inflow into the magnetosphere, which could dominate in quasi-steady cases. The lowest frequency (∼1–2mHz) TBL fluctuations are traced throughout the magnetosheath from the post-bow shock region up to the inner magnetopause border. The resonance of these fluctuations with dayside flux tubes might provide an effective correlative link for the entire dayside region of the solar wind interaction with the magnetopause and cusp ionosphere. The TBL disturbances are characterized by kinked, double-sloped wave power spectra and, most probably, three-wave cascading. Both elliptical polarization and nearly Alfvénic phase velocities with characteristic dispersion indicate the kinetic Alfvénic nature of the TBL waves. The three-wave phase coupling could effectively support the self-organization of the TBL plasma by means of coherent resonant-like structures. The estimated characteristic scale of the "resonator" is of the order of the TBL dimension over the cusps. Inverse cascades of kinetic Alfvén waves are proposed for forming the larger scale "organizing" structures, which in turn synchronize all nonlinear cascades within the TBL in a self-consistent manner. This infers a qualitative difference from the traditional approach, wherein the MSH/cusp interaction is regarded as a linear superposition of magnetospheric responses on the solar wind or MSH disturbances. Key words. Magnetospheric physics (magnetopause, cusp, and boundary layers) – Space plasma physics (turbulence; nonlinear phenomena)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2004-08-10
    Description: This paper presents strong experimental evidence for a major perturbation in ozone concentrations over large parts of the North Atlantic Ocean from the surface to 8 km associated with continental pollutants. The evidence was gathered in the course of 7 flights by the UK Meteorological Office C-130 aircraft based on the Azores, and 4 ferry flights between the UK to the Azores in spring and summer 1997 as a component of the NERC-funded ACSOE project. The total latitude range covered was approximately 55°N–25°N, and the longitude range was approximately 0° to 40°W. Many profiles were made between the sea surface and altitudes up to 9 km to survey the composition of the marine atmosphere. The C-130 aircraft was comprehensively equipped to measure many chemical and physical parameters along with standard meteorological instrumentation. Thus it was able to measure ozone and speciated NOy, along with tracers including water vapour, carbon monoxide and condensation nuclei, in near real time. The overall "picture" of the troposphere over large parts of the North Atlantic is of layers of pollution from the continents of different ages interspersed with layers of air uplifted from the marine boundary layer. The lowest ozone concentrations were recorded in the marine boundary layer where there is evidence for extensive ozone destruction in summer. Flights were made to penetrate the outflow of hurricane Erica, to determine the southerly extent of polluted air in summer, to examine the impact of frontal systems on the composition of remote marine air, and to trace long-range pollution from the west coast of the USA interspersed with air with a stratospheric origin. In one of the spring flights it is possible that a plume of polluted air with high ozone and NOy, and with an origin in southeast Asia, was intercepted off the coast of Portugal. The concentrations of NOx, in this plume were sufficient for ozone formation to be continuing along its track from west to east. The instrument to measure NOy almost certainly was only measuring the sum of organic nitrates (mostly in the form of PAN) plus NOx. The high correlation between NOy and ozone under these conditions strongly suggests a non-stratospheric source for most of the ozone encountered over large parts of the atmosphere upwind of Europe. There was a marked seasonal variation in the NOy with about twice as much present in the spring flights than in the summer flights. The overall ozone levels in both spring and summer were somewhat similar although the highest ozone concentration encountered (~100 ppbv) was observed in summer in some polluted layers in mid Atlantic with an origin in the boundary layer over the southeastern USA. The bulk of the pollutants, ozone, CO, and NOy, were in the free troposphere at altitudes between 3 and 8 km. The only instances of pollution at lower levels were in the form of ship plumes, which were encountered several times. The data therefore strongly support the need for more in-situ aircraft experiments to quantify and understand the phenomenon of long-range transport of pollution from continent to continent. Observations at ground-based stations are inadequate for this purpose and satellite data is incomplete both in terms of its altitude detail and in the extent of chemical speciation, particularly for ascertaining whether chemical production and destruction processes for ozone are occurring.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2004-09-07
    Description: Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130°). Cluster 1 was outbound through the high altitude (~12RE) exterior northern cusp tailward of the bifurcation line (geomagnetic Bx〉0) when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field perturbations and tailward flow deflections. Analysis shows these to be Alfvén waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfvén waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy-latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs) which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs) just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward), implying a coherent eastward (tailward) motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ~2°. The unprecedented accuracy of the conjunction argues strongly for the validity of the interpretation of the various signatures as resulting from transient reconnection. In particular, the cusp ion steps arise on this pass from this origin, in consonance with the original pulsating cusp model. The observations point to the need of extending current ideas on the response of the ionosphere to transient reconnection. Specifically, it argues in favor of re-establishing the high-latitude boundary layer downstream of the cusp as an active site of momentum transfer.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2004-09-28
    Description: The present paper reviews existing knowledge with regard to Organic Aerosol (OA) of importance for global climate modelling and defines critical gaps needed to reduce the involved uncertainties. All pieces required for the representation of OA in a global climate model are sketched out with special attention to Secondary Organic Aerosol (SOA): The emission estimates of primary carbonaceous particles and SOA precursor gases are summarized. The up-to-date understanding of the chemical formation and transformation of condensable organic material is outlined. Knowledge on the hygroscopicity of OA and measurements of optical properties of the organic aerosol constituents are summarized. The mechanisms of interactions of OA with clouds and dry and wet removal processes parameterisations in global models are outlined. This information is synthesized to provide a continuous analysis of the flow from the emitted material to the atmosphere up to the point of the climate impact of the produced organic aerosol. The sources of uncertainties at each step of this process are highlighted as areas that require further studies.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2004-11-05
    Description: The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS-14) measured solar-beam transmission on the NASA DC-8 during the Second SAGE III Ozone Loss and Validation Experiment (SOLVE II). This paper presents AATS-14 results for multiwavelength aerosol optical depth (AOD), including its spatial structure and comparisons to results from two satellite sensors and another DC-8 instrument. These are the Stratospheric Aerosol and Gas Experiment III (SAGE III), the Polar Ozone and Aerosol Measurement III (POAM III) and the Direct-beam Irradiance Airborne Spectrometer (DIAS). AATS-14 provides aerosol results at 13 wavelengths λ spanning the full range of SAGE III and POAM III aerosol wavelengths. Because most AATS measurements were made at solar zenith angles (SZA) near 90°, retrieved AODs are strongly affected by uncertainties in the relative optical airmass of the aerosols and other constituents along the refracted line of sight (LOS) between instrument and sun. To reduce dependence of the AATS-satellite comparisons on airmass, we perform the comparisons in line-of-sight (LOS) transmission and LOS optical thickness (OT) as well as in vertical OT (i.e., optical depth, OD). We also use a new airmass algorithm that validates the algorithm we previously used to within 2% for SZA440 nm, because of signal depletion for shorter λ on the satellite full-limb LOS. For the 4 AATS-SAGE and 4 AATS-POAM near-coincidences conducted 19–31 January 2003, AATS-satellite AOD differences were ≤0.0041 for all λ〉440 nm. RMS differences were ≤0.0022 for SAGE-AATS and ≤0.0026 for POAM-AATS. RMS percentage differences in AOD ([SAGE-AATS]/AATS) were ≤33% for λ~755 nm, AATS-POAM differences were less than AATS-SAGE differences, and RMS percentage differences in AOD ([AATS-POAM]/AATS) were ≤31% for all λ between 440 and 1020 nm. Unexplained differences that remain are associated with transmission differences, rather than differences in gas subtraction or conversion from LOS to vertical quantities. The very small stratospheric AOD values that occurred during SOLVE II added to the challenge of the comparisons, but do not explain all the differences.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2004-01-01
    Description: The Super Dual Auroral Radar Network (SuperDARN), which consists of networks of HF radars surrounding the northern and southern poles, has proven to be an extremely successful experimental technique in a wide range of scientific areas. The basic design of the radars, which contributes to SuperDARN, has remained virtually unchanged since the first radar was built in the early 1980s. This paper presents the first results of a significant new development of the basic system. Termed "Stereo", this development involves the addition of a duplicate receive channel and makes use of the spare duty cycle available in the current transmitters. The Stereo system has been implemented on the two radars that form the Co-operative UK Twin Located Auroral Sounding System (CUTLASS), which are the easternmost pair of radars in the Northern Hemisphere SuperDARN chain. Instead of the standard 7 pulse sequence normally employed by the radars, two such pulse sequences are interleaved and transmitted at different frequencies separated by more than 15kHz. This development allows for the radar to run two entirely different experimental modes simultaneously. Here we describe the basic Stereo system and some of the early results. We also identify potential new experiments which could be run with Stereo to complement the existing standard SuperDARN radar. Key words. Ionosphere (ionosphere-magnetosphere interactions; ionospheric irregularities; instruments and techniques)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2004-06-14
    Description: Model-measurement comparisons of HOx in extremely clean air ([NO]
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-06-10
    Description: During the MINOS campaign in August 2001 comprehensive two-dimensional gas chromatography (GC x GC) was applied to the in situ measurements of atmospheric volatile organic compounds (VOCs) at the Finokalia ground station, Crete. The measurement system employs a thermal desorption unit for on-line sampling and injection, and a GC x GC separation system equipped with a flame ionization detector (FID) for detection. The system was optimized to resolve C7-C14 organic components. Two-dimensional chromatograms from measurements of Finokalia air samples show several hundred well-separated peaks. To facilitate peak identification, cartridge samples collected at Finokalia were analyzed using the same GC x GC system coupled with a time-of-flight mass spectrometer (TOF-MS). The resulting mass spectra were deconvoluted and compared to spectra from a database for tentative peak identification. About 650 peaks have been identified in the two-dimensional plane, with significant signal/noise ratios (〉100) and high spectra similarities (〉800). By comparing observed retention indices with those found in the literature, 235 of the identifications have been confirmed. 150 of the confirmed compounds show up in the C7-C14 range of the chromatogram from the in situ measurement. However, at least as many peaks remain unidentified. For quantification of the GC x GC measurements, peak volumes of measured compounds have been integrated and externally calibrated using a standard gas mixture.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...