ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Recombinant Fusion Proteins/metabolism  (8)
  • Time Factors  (6)
  • American Association for the Advancement of Science (AAAS)  (14)
  • American Geophysical Union (AGU)
  • 2000-2004  (14)
Collection
Keywords
Publisher
  • American Association for the Advancement of Science (AAAS)  (14)
  • American Geophysical Union (AGU)
Years
Year
  • 1
    Publication Date: 2000-11-04
    Description: The Agrobacterium VirB/D4 transport system mediates the transfer of a nucleoprotein T complex into plant cells, leading to crown gall disease. In addition, several Virulence proteins must somehow be transported to fulfill a function in planta. Here, we used fusions between Cre recombinase and VirE2 or VirF to directly demonstrate protein translocation into plant cells. Transport of the proteins was monitored by a Cre-mediated in planta recombination event resulting in a selectable phenotype and depended on the VirB/D4 transport system but did not require transferred DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vergunst, A C -- Schrammeijer, B -- den Dulk-Ras, A -- de Vlaam, C M -- Regensburg-Tuink, T J -- Hooykaas, P J -- New York, N.Y. -- Science. 2000 Nov 3;290(5493):979-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Plant Sciences, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL, Leiden, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11062129" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/genetics/*metabolism/pathogenicity ; Arabidopsis/genetics/*metabolism/microbiology ; Bacterial Proteins/*metabolism ; DNA, Bacterial/genetics/metabolism ; DNA-Binding Proteins/*metabolism ; Drug Resistance ; Integrases/genetics/*metabolism ; *Ion Channels ; Kanamycin/pharmacology ; Plant Roots/metabolism ; Plants, Genetically Modified ; Plasmids ; Polymerase Chain Reaction ; *Protein Transport ; Recombinant Fusion Proteins/metabolism ; *Viral Proteins ; Virulence ; *Virulence Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-05-19
    Description: Force microscopy has been used to quantitatively measure the infinitesimal forces that characterize interactions between Shewanella oneidensis (a dissimilatory metal-reducing bacterium) and goethite (alpha-FeOOH), both commonly found in Earth near-surface environments. Force measurements with subnanonewton resolution were made in real time with living cells under aerobic and anaerobic solutions as a function of the distance, in nanometers, between a cell and the mineral surface. Energy values [in attojoules (10(-18) joules)] derived from these measurements show that the affinity between S. oneidensis and goethite rapidly increases by two to five times under anaerobic conditions in which electron transfer from bacterium to mineral is expected. Specific signatures in the force curves suggest that a 150-kilodalton putative iron reductase is mobilized within the outer membrane of S. oneidensis and specifically interacts with the goethite surface to facilitate the electron transfer process.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lower, S K -- Hochella, M F Jr -- Beveridge, T J -- New York, N.Y. -- Science. 2001 May 18;292(5520):1360-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉NanoGeoscience and Technology Laboratory, Department of Geological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA. slower@vt.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11359008" target="_blank"〉PubMed〈/a〉
    Keywords: Aerobiosis ; Anaerobiosis ; *Bacterial Adhesion ; Electron Transport ; *FMN Reductase ; Geologic Sediments/chemistry/*microbiology ; Iron Compounds/chemistry/*metabolism ; *Microscopy, Atomic Force ; Minerals ; NADH, NADPH Oxidoreductases/metabolism ; Shewanella/enzymology/*metabolism ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2001-09-08
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Layne, S P -- Beugelsdijk, T J -- Patel, C K -- Taubenberger, J K -- Cox, N J -- Gust, I D -- Hay, A J -- Tashiro, M -- Lavanchy, D -- New York, N.Y. -- Science. 2001 Sep 7;293(5536):1729.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11546841" target="_blank"〉PubMed〈/a〉
    Keywords: Environmental Monitoring/economics/methods ; Epidemiological Monitoring ; Humans ; Influenza, Human/diagnosis/economics/*epidemiology ; *International Cooperation ; Internet ; Population Surveillance/*methods ; Time Factors ; World Health Organization
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-05-26
    Description: Dysfunction of the tubby protein results in maturity-onset obesity in mice. Tubby has been implicated as a transcription regulator, but details of the molecular mechanism underlying its function remain unclear. Here we show that tubby functions in signal transduction from heterotrimeric GTP-binding protein (G protein)-coupled receptors. Tubby localizes to the plasma membrane by binding phosphatidylinositol 4,5-bisphosphate through its carboxyl terminal "tubby domain." X-ray crystallography reveals the atomic-level basis of this interaction and implicates tubby domains as phosphorylated-phosphatidyl- inositol binding factors. Receptor-mediated activation of G protein alphaq (Galphaq) releases tubby from the plasma membrane through the action of phospholipase C-beta, triggering translocation of tubby to the cell nucleus. The localization of tubby-like protein 3 (TULP3) is similarly regulated. These data suggest that tubby proteins function as membrane-bound transcription regulators that translocate to the nucleus in response to phosphoinositide hydrolysis, providing a direct link between G-protein signaling and the regulation of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santagata, S -- Boggon, T J -- Baird, C L -- Gomez, C A -- Zhao, J -- Shan, W S -- Myszka, D G -- Shapiro, L -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2041-50. Epub 2001 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ruttenberg Cancer Center, Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine of New York University, 1425 Madison Avenue New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11375483" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cells, Cultured ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Gene Expression Regulation ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Humans ; Isoenzymes/*metabolism ; Membrane Lipids/metabolism ; Mice ; Models, Biological ; Molecular Sequence Data ; Nuclear Localization Signals ; Obesity/genetics/metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C ; Receptors, Muscarinic/metabolism ; Receptors, Serotonin/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-12-23
    Description: Amazonian rain forest-savanna boundaries are highly sensitive to climatic change and may also play an important role in rain forest speciation. However, their dynamics over millennial time scales are poorly understood. Here, we present late Quaternary pollen records from the southern margin of Amazonia, which show that the humid evergreen rain forests of eastern Bolivia have been expanding southward over the past 3000 years and that their present-day limit represents the southernmost extent of Amazonian rain forest over at least the past 50,000 years. This rain forest expansion is attributed to increased seasonal latitudinal migration of the Intertropical Convergence Zone, which can in turn be explained by Milankovitch astronomic forcing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mayle, F E -- Burbridge, R -- Killeen, T J -- New York, N.Y. -- Science. 2000 Dec 22;290(5500):2291-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Geography, University of Leicester, Leicester LE1 7RH, UK. fem1@leicester.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11125139" target="_blank"〉PubMed〈/a〉
    Keywords: Bolivia ; Climate ; *Ecosystem ; Fossils ; Geologic Sediments ; Pollen ; Rain ; Time Factors ; *Trees
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-03-17
    Description: In the flash-lag illusion, a flash and a moving object in the same location appear to be offset. A series of psychophysical experiments yields data inconsistent with two previously proposed explanations: motion extrapolation (a predictive model) and latency difference (an online model). We propose an alternative in which visual awareness is neither predictive nor online but is postdictive, so that the percept attributed to the time of the flash is a function of events that happen in the approximately 80 milliseconds after the flash. The results here show how interpolation of the past is the only framework of the three models that provides a unified explanation for the flash-lag phenomenon.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eagleman, D M -- Sejnowski, T J -- New York, N.Y. -- Science. 2000 Mar 17;287(5460):2036-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Sloan Center for Theoretical Neurobiology, Computational Neurobiology Laboratory, Howard Hughes Medical Institute, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA. eagleman@salk.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10720334" target="_blank"〉PubMed〈/a〉
    Keywords: *Awareness ; Humans ; Models, Neurological ; *Motion Perception ; *Optical Illusions ; Time Factors ; *Visual Perception
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-03-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Briffa, Keith R -- Osborn, Timothy J -- New York, N.Y. -- Science. 2002 Mar 22;295(5563):2227-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Climatic Research Unit, University of East Anglia, Norwich NR4 7TJ, United Kingdom. k.briffa@uea.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11910098" target="_blank"〉PubMed〈/a〉
    Keywords: Bias (Epidemiology) ; Calibration ; *Climate ; Geography ; Greenhouse Effect ; *Temperature ; Time Factors ; Trees/growth & development/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-02-09
    Description: Lamellipodia are thin, veil-like extensions at the edge of cells that contain a dynamic array of actin filaments. We describe an approach for analyzing spatial regulation of actin polymerization and depolymerization in vivo in which we tracked single molecules of actin fused to the green fluorescent protein. Polymerization and the lifetime of actin filaments in lamellipodia were measured with high spatial precision. Basal polymerization and depolymerization occurred throughout lamellipodia with largely constant kinetics, and polymerization was promoted within one micron of the lamellipodium tip. Most of the actin filaments in the lamellipodium were generated by polymerization away from the tip.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Naoki -- Mitchison, Timothy J -- GM48027/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1083-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. naoki_watanabe@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834838" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/drug effects/*metabolism/ultrastructure ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*metabolism ; Animals ; Biopolymers ; Cell Line ; *Cytoskeletal Proteins ; *Depsipeptides ; Fibroblasts ; Fluorescence ; Green Fluorescent Proteins ; Half-Life ; Luminescent Proteins ; Models, Biological ; Peptides, Cyclic/pharmacology ; Pseudopodia/*metabolism/ultrastructure ; Recombinant Fusion Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-09-23
    Description: Mammals can be trained to make a conditioned movement at a precise time, which is correlated to the interval between the conditioned stimulus and unconditioned stimulus during the learning. This learning-dependent timing has been shown to depend on an intact cerebellar cortex, but which cellular process is responsible for this form of learning remains to be demonstrated. Here, we show that protein kinase C-dependent long-term depression in Purkinje cells is necessary for learning-dependent timing of Pavlovian-conditioned eyeblink responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koekkoek, S K E -- Hulscher, H C -- Dortland, B R -- Hensbroek, R A -- Elgersma, Y -- Ruigrok, T J H -- De Zeeuw, C I -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500987" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Blinking ; Cerebellum/*physiology ; *Conditioning, Eyelid ; Electroshock ; *Learning ; *Long-Term Synaptic Depression ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; N-Methylaspartate/pharmacology ; Protein Kinase C/genetics/metabolism ; Purkinje Cells/*physiology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-06-14
    Description: The SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) hypothesis suggests that pairs of proteins known as vesicle (v-) SNAREs and target membrane (t-) SNAREs interact specifically to control and mediate intracellular membrane fusion events. Here, cells expressing the interacting domains of v- and t-SNAREs on the cell surface were found to fuse spontaneously, demonstrating that SNAREs are sufficient to fuse biological membranes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hu, Chuan -- Ahmed, Mahiuddin -- Melia, Thomas J -- Sollner, Thomas H -- Mayer, Thomas -- Rothman, James E -- New York, N.Y. -- Science. 2003 Jun 13;300(5626):1745-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, Box 251, New York, NY 10021, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12805548" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Surface/chemistry/*metabolism ; COS Cells ; *Cell Fusion ; Cell Membrane/*metabolism ; Cercopithecus aethiops ; Endoplasmic Reticulum/metabolism ; Glycosylation ; Membrane Fusion/physiology ; Membrane Proteins/chemistry/genetics/*metabolism ; Mutation ; Nerve Tissue Proteins/chemistry/genetics/*metabolism ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; R-SNARE Proteins ; Recombinant Fusion Proteins/metabolism ; Synaptosomal-Associated Protein 25 ; Syntaxin 1 ; Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...