ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mutation  (15)
  • Recombinant Fusion Proteins/metabolism  (8)
  • American Association for the Advancement of Science (AAAS)  (20)
  • American Geophysical Union (AGU)
  • 2000-2004  (20)
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (20)
  • American Geophysical Union (AGU)
Years
Year
  • 1
    Publication Date: 2000-11-04
    Description: The Agrobacterium VirB/D4 transport system mediates the transfer of a nucleoprotein T complex into plant cells, leading to crown gall disease. In addition, several Virulence proteins must somehow be transported to fulfill a function in planta. Here, we used fusions between Cre recombinase and VirE2 or VirF to directly demonstrate protein translocation into plant cells. Transport of the proteins was monitored by a Cre-mediated in planta recombination event resulting in a selectable phenotype and depended on the VirB/D4 transport system but did not require transferred DNA.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Vergunst, A C -- Schrammeijer, B -- den Dulk-Ras, A -- de Vlaam, C M -- Regensburg-Tuink, T J -- Hooykaas, P J -- New York, N.Y. -- Science. 2000 Nov 3;290(5493):979-82.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Institute of Molecular Plant Sciences, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL, Leiden, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11062129" target="_blank"〉PubMed〈/a〉
    Keywords: Agrobacterium tumefaciens/genetics/*metabolism/pathogenicity ; Arabidopsis/genetics/*metabolism/microbiology ; Bacterial Proteins/*metabolism ; DNA, Bacterial/genetics/metabolism ; DNA-Binding Proteins/*metabolism ; Drug Resistance ; Integrases/genetics/*metabolism ; *Ion Channels ; Kanamycin/pharmacology ; Plant Roots/metabolism ; Plants, Genetically Modified ; Plasmids ; Polymerase Chain Reaction ; *Protein Transport ; Recombinant Fusion Proteins/metabolism ; *Viral Proteins ; Virulence ; *Virulence Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-07-06
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Parsons, T J -- Irwin, J A -- New York, N.Y. -- Science. 2000 Jun 16;288(5473):1931.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Armed Forces DNA Identification Laboratory, Armed Forces Institute of Pathology, 1413 Research Blvd., Rockville, MD 20886, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10877702" target="_blank"〉PubMed〈/a〉
    Keywords: DNA, Mitochondrial/*genetics ; Databases, Factual ; Ethnic Groups/genetics ; Humans ; Linkage Disequilibrium ; Mutation ; *Recombination, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-12-21
    Description: Phenotypic variation among organisms is central to evolutionary adaptations underlying natural and artificial selection, and also determines individual susceptibility to common diseases. These types of complex traits pose special challenges for genetic analysis because of gene-gene and gene-environment interactions, genetic heterogeneity, low penetrance, and limited statistical power. Emerging genome resources and technologies are enabling systematic identification of genes underlying these complex traits. We propose standards for proof of gene discovery in complex traits and evaluate the nature of the genes identified to date. These proof-of-concept studies demonstrate the insights that can be expected from the accelerating pace of gene discovery in this field.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Glazier, Anne M -- Nadeau, Joseph H -- Aitman, Timothy J -- New York, N.Y. -- Science. 2002 Dec 20;298(5602):2345-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Physiological Genomics and Medicine Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College Faculty of Medicine, Ducane Road, London W12 0NN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12493905" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Animals ; Chromosome Mapping ; Genetic Linkage ; *Genetic Predisposition to Disease ; Genetic Variation ; Humans ; *Multifactorial Inheritance ; Mutation ; Phenotype ; Plants/genetics ; *Quantitative Trait Loci ; *Quantitative Trait, Heritable ; Saccharomyces cerevisiae/genetics ; Sequence Analysis, DNA
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-05-26
    Description: Dysfunction of the tubby protein results in maturity-onset obesity in mice. Tubby has been implicated as a transcription regulator, but details of the molecular mechanism underlying its function remain unclear. Here we show that tubby functions in signal transduction from heterotrimeric GTP-binding protein (G protein)-coupled receptors. Tubby localizes to the plasma membrane by binding phosphatidylinositol 4,5-bisphosphate through its carboxyl terminal "tubby domain." X-ray crystallography reveals the atomic-level basis of this interaction and implicates tubby domains as phosphorylated-phosphatidyl- inositol binding factors. Receptor-mediated activation of G protein alphaq (Galphaq) releases tubby from the plasma membrane through the action of phospholipase C-beta, triggering translocation of tubby to the cell nucleus. The localization of tubby-like protein 3 (TULP3) is similarly regulated. These data suggest that tubby proteins function as membrane-bound transcription regulators that translocate to the nucleus in response to phosphoinositide hydrolysis, providing a direct link between G-protein signaling and the regulation of gene expression.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Santagata, S -- Boggon, T J -- Baird, C L -- Gomez, C A -- Zhao, J -- Shan, W S -- Myszka, D G -- Shapiro, L -- New York, N.Y. -- Science. 2001 Jun 15;292(5524):2041-50. Epub 2001 May 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Ruttenberg Cancer Center, Structural Biology Program, Department of Physiology and Biophysics, Mount Sinai School of Medicine of New York University, 1425 Madison Avenue New York, NY 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11375483" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus ; Adaptor Proteins, Signal Transducing ; Amino Acid Sequence ; Animals ; Cell Membrane/metabolism ; Cell Nucleus/*metabolism ; Cells, Cultured ; Crystallography, X-Ray ; GTP-Binding Protein alpha Subunits, Gq-G11 ; Gene Expression Regulation ; Heterotrimeric GTP-Binding Proteins/*metabolism ; Humans ; Isoenzymes/*metabolism ; Membrane Lipids/metabolism ; Mice ; Models, Biological ; Molecular Sequence Data ; Nuclear Localization Signals ; Obesity/genetics/metabolism ; Phosphatidylinositol 4,5-Diphosphate/*metabolism ; Phosphatidylinositol Phosphates/metabolism ; Phospholipase C beta ; Phosphorylation ; Protein Structure, Tertiary ; Proteins/chemistry/genetics/*metabolism ; Receptor, Serotonin, 5-HT2C ; Receptors, Muscarinic/metabolism ; Receptors, Serotonin/metabolism ; Recombinant Fusion Proteins/metabolism ; *Signal Transduction ; Transcription Factors/chemistry/genetics/*metabolism ; Type C Phospholipases/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2001-08-25
    Description: Small molecules that affect specific protein functions can be valuable tools for dissecting complex cellular processes. Peptidoglycan synthesis and degradation is a process in bacteria that involves multiple enzymes under strict temporal and spatial regulation. We used a set of small molecules that inhibit the transglycosylation step of peptidoglycan synthesis to discover genes that help to regulate this process. We identified a gene responsible for the susceptibility of Escherichia coli cells to killing by glycolipid derivatives of vancomycin, thus establishing a genetic basis for activity differences between these compounds and vancomycin.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Eggert, U S -- Ruiz, N -- Falcone, B V -- Branstrom, A A -- Goldman, R C -- Silhavy, T J -- Kahne, D -- New York, N.Y. -- Science. 2001 Oct 12;294(5541):361-4. Epub 2001 Aug 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11520949" target="_blank"〉PubMed〈/a〉
    Keywords: Anti-Bacterial Agents/chemistry/*pharmacology ; Bacterial Proteins/genetics/metabolism ; Drug Resistance, Microbial ; Drug Resistance, Multiple ; Enzyme Inhibitors/pharmacology ; Escherichia coli/*drug effects/genetics/growth & development ; *Genes, Bacterial ; Genetic Complementation Test ; Glycosylation ; Hexosyltransferases/antagonists & inhibitors ; Lipoproteins/genetics/metabolism ; Microbial Sensitivity Tests ; Mutation ; N-Acetylmuramoyl-L-alanine Amidase/metabolism ; Oligosaccharides/chemistry/pharmacology ; Peptidoglycan/*biosynthesis ; Peptidoglycan Glycosyltransferase ; Phenotype ; Vancomycin/*analogs & derivatives/chemistry/*pharmacology ; Vancomycin Resistance/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-06-22
    Description: In mammals, fertilization typically involves the ovulation of one or a few eggs at one end of the female reproductive tract and the entry of millions of sperm at the other. Given this disparity in numbers, it might be expected that the more precious commodity-eggs-would be subject to more stringent quality-control mechanisms. However, information from engineered mutations of meiotic genes suggests just the opposite. Specifically, the available mutants demonstrate striking sexual dimorphism in response to meiotic disruption; for example, faced with adversity, male meiosis grinds to a halt, whereas female meiosis soldiers on. This female "robustness" comes with a cost, however, because aneuploidy appears to be increased in the resultant oocytes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Hunt, Patricia A -- Hassold, Terry J -- HD21341/HD/NICHD NIH HHS/ -- HD31866/HD/NICHD NIH HHS/ -- HD37502/HD/NICHD NIH HHS/ -- New York, N.Y. -- Science. 2002 Jun 21;296(5576):2181-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Case Western Reserve University, Cleveland, OH 44106-4955, USA. pah13@po.cwru.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12077403" target="_blank"〉PubMed〈/a〉
    Keywords: Aneuploidy ; Animals ; Cell Cycle ; Female ; Humans ; Male ; *Meiosis ; Mice ; Mutation ; Oocytes/*physiology ; *Oogenesis ; Prophase ; Proteins/genetics/metabolism ; Sex Characteristics ; Spermatocytes/*physiology ; *Spermatogenesis
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-02-09
    Description: Lamellipodia are thin, veil-like extensions at the edge of cells that contain a dynamic array of actin filaments. We describe an approach for analyzing spatial regulation of actin polymerization and depolymerization in vivo in which we tracked single molecules of actin fused to the green fluorescent protein. Polymerization and the lifetime of actin filaments in lamellipodia were measured with high spatial precision. Basal polymerization and depolymerization occurred throughout lamellipodia with largely constant kinetics, and polymerization was promoted within one micron of the lamellipodium tip. Most of the actin filaments in the lamellipodium were generated by polymerization away from the tip.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Watanabe, Naoki -- Mitchison, Timothy J -- GM48027/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2002 Feb 8;295(5557):1083-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA. naoki_watanabe@hms.harvard.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11834838" target="_blank"〉PubMed〈/a〉
    Keywords: Actin Cytoskeleton/drug effects/*metabolism/ultrastructure ; Actin-Related Protein 2 ; Actin-Related Protein 3 ; Actins/*metabolism ; Animals ; Biopolymers ; Cell Line ; *Cytoskeletal Proteins ; *Depsipeptides ; Fibroblasts ; Fluorescence ; Green Fluorescent Proteins ; Half-Life ; Luminescent Proteins ; Models, Biological ; Peptides, Cyclic/pharmacology ; Pseudopodia/*metabolism/ultrastructure ; Recombinant Fusion Proteins/metabolism ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-08-02
    Description: Over 225,000 independent Agrobacterium transferred DNA (T-DNA) insertion events in the genome of the reference plant Arabidopsis thaliana have been created that represent near saturation of the gene space. The precise locations were determined for more than 88,000 T-DNA insertions, which resulted in the identification of mutations in more than 21,700 of the approximately 29,454 predicted Arabidopsis genes. Genome-wide analysis of the distribution of integration events revealed the existence of a large integration site bias at both the chromosome and gene levels. Insertion mutations were identified in genes that are regulated in response to the plant hormone ethylene.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Alonso, Jose M -- Stepanova, Anna N -- Leisse, Thomas J -- Kim, Christopher J -- Chen, Huaming -- Shinn, Paul -- Stevenson, Denise K -- Zimmerman, Justin -- Barajas, Pascual -- Cheuk, Rosa -- Gadrinab, Carmelita -- Heller, Collen -- Jeske, Albert -- Koesema, Eric -- Meyers, Cristina C -- Parker, Holly -- Prednis, Lance -- Ansari, Yasser -- Choy, Nathan -- Deen, Hashim -- Geralt, Michael -- Hazari, Nisha -- Hom, Emily -- Karnes, Meagan -- Mulholland, Celene -- Ndubaku, Ral -- Schmidt, Ian -- Guzman, Plinio -- Aguilar-Henonin, Laura -- Schmid, Markus -- Weigel, Detlef -- Carter, David E -- Marchand, Trudy -- Risseeuw, Eddy -- Brogden, Debra -- Zeko, Albana -- Crosby, William L -- Berry, Charles C -- Ecker, Joseph R -- New York, N.Y. -- Science. 2003 Aug 1;301(5633):653-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12893945" target="_blank"〉PubMed〈/a〉
    Keywords: 3' Untranslated Regions ; 5' Untranslated Regions ; Alleles ; Arabidopsis/*genetics/metabolism ; Arabidopsis Proteins/genetics/metabolism ; Base Composition ; Chromosomes, Plant/genetics ; DNA, Bacterial/genetics ; DNA, Plant/chemistry/genetics ; Ethylenes/pharmacology ; Exons ; Expressed Sequence Tags ; Gene Expression ; Gene Expression Profiling ; Gene Expression Regulation, Plant/drug effects ; Genes, Plant ; *Genome, Plant ; Introns ; *Mutagenesis, Insertional ; Mutation ; Oligonucleotide Array Sequence Analysis ; Promoter Regions, Genetic ; Recombination, Genetic ; Rhizobium/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-09-23
    Description: Mammals can be trained to make a conditioned movement at a precise time, which is correlated to the interval between the conditioned stimulus and unconditioned stimulus during the learning. This learning-dependent timing has been shown to depend on an intact cerebellar cortex, but which cellular process is responsible for this form of learning remains to be demonstrated. Here, we show that protein kinase C-dependent long-term depression in Purkinje cells is necessary for learning-dependent timing of Pavlovian-conditioned eyeblink responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Koekkoek, S K E -- Hulscher, H C -- Dortland, B R -- Hensbroek, R A -- Elgersma, Y -- Ruigrok, T J H -- De Zeeuw, C I -- New York, N.Y. -- Science. 2003 Sep 19;301(5640):1736-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neuroscience, Erasmus MC, 3000 DR Rotterdam, Netherlands.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14500987" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Blinking ; Cerebellum/*physiology ; *Conditioning, Eyelid ; Electroshock ; *Learning ; *Long-Term Synaptic Depression ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Mutation ; N-Methylaspartate/pharmacology ; Protein Kinase C/genetics/metabolism ; Purkinje Cells/*physiology ; Time Factors
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2003-12-13
    Description: Even though human and chimpanzee gene sequences are nearly 99% identical, sequence comparisons can nevertheless be highly informative in identifying biologically important changes that have occurred since our ancestral lineages diverged. We analyzed alignments of 7645 chimpanzee gene sequences to their human and mouse orthologs. These three-species sequence alignments allowed us to identify genes undergoing natural selection along the human and chimp lineage by fitting models that include parameters specifying rates of synonymous and nonsynonymous nucleotide substitution. This evolutionary approach revealed an informative set of genes with significantly different patterns of substitution on the human lineage compared with the chimpanzee and mouse lineages. Partitions of genes into inferred biological classes identified accelerated evolution in several functional classes, including olfaction and nuclear transport. In addition to suggesting adaptive physiological differences between chimps and humans, human-accelerated genes are significantly more likely to underlie major known Mendelian disorders.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Clark, Andrew G -- Glanowski, Stephen -- Nielsen, Rasmus -- Thomas, Paul D -- Kejariwal, Anish -- Todd, Melissa A -- Tanenbaum, David M -- Civello, Daniel -- Lu, Fu -- Murphy, Brian -- Ferriera, Steve -- Wang, Gary -- Zheng, Xianqgun -- White, Thomas J -- Sninsky, John J -- Adams, Mark D -- Cargill, Michele -- New York, N.Y. -- Science. 2003 Dec 12;302(5652):1960-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/14671302" target="_blank"〉PubMed〈/a〉
    Keywords: Active Transport, Cell Nucleus/genetics ; Amino Acids/metabolism ; Animals ; Biological Evolution ; Computational Biology ; *Evolution, Molecular ; Female ; Genes ; Genetic Diseases, Inborn/genetics ; *Genome ; *Genome, Human ; Humans ; Likelihood Functions ; Male ; Mice/genetics ; Models, Genetic ; Models, Statistical ; Mutation ; Pan troglodytes/*genetics ; Phylogeny ; Proteins/chemistry/genetics ; Pseudogenes ; Receptors, Odorant/genetics ; *Selection, Genetic ; Sequence Alignment ; Sequence Homology, Nucleic Acid ; Signal Transduction/genetics ; Smell/genetics ; Species Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...