ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2002-09-14
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, John H -- Elledge, Stephen J -- New York, N.Y. -- Science. 2002 Sep 13;297(5588):1822-3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12228708" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; BRCA2 Protein/*chemistry/*metabolism ; Binding Sites ; Breast Neoplasms/genetics ; Crystallography, X-Ray ; DNA/*metabolism ; DNA Damage ; *DNA Repair ; DNA, Single-Stranded/metabolism ; DNA-Binding Proteins/metabolism ; Female ; Genes, BRCA1 ; Genes, BRCA2 ; Genetic Predisposition to Disease ; Humans ; Mice ; Ovarian Neoplasms/genetics ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Rad51 Recombinase ; Rats ; Recombination, Genetic ; Replication Protein A
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2000-03-04
    Description: To determine the ability of antibodies to provide protection from Ebola viruses, monoclonal antibodies (mAbs) to the Ebola glycoprotein were generated and evaluated for efficacy. We identified several protective mAbs directed toward five unique epitopes on Ebola glycoprotein. One of the epitopes is conserved among all Ebola viruses that are known to be pathogenic for humans. Some protective mAbs were also effective therapeutically when administered to mice 2 days after exposure to lethal Ebola virus. The identification of protective mAbs has important implications for developing vaccines and therapies for Ebola virus.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, J A -- Hevey, M -- Bakken, R -- Guest, S -- Bray, M -- Schmaljohn, A L -- Hart, M K -- New York, N.Y. -- Science. 2000 Mar 3;287(5458):1664-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Frederick, MD 21702-5011, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10698744" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antibodies, Monoclonal/*immunology ; Antibodies, Viral/*immunology ; Antibody Affinity ; Antigens, Viral/immunology ; Binding, Competitive ; Complement System Proteins/immunology ; Ebolavirus/*immunology/physiology ; Epitopes/immunology ; Female ; Hemorrhagic Fever, Ebola/*prevention & control/therapy ; Humans ; Immunoglobulin G/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Neutralization Tests ; Specific Pathogen-Free Organisms ; Viral Envelope Proteins/*immunology ; Viral Plaque Assay
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2000-01-15
    Description: Murine T10 and T22 are highly related nonclassical major histocompatibility complex (MHC) class Ib proteins that bind to certain gammadelta T cell receptors (TCRs) in the absence of other components. The crystal structure of T22b at 3.1 angstroms reveals similarities to MHC class I molecules, but one side of the normal peptide-binding groove is severely truncated, which allows direct access to the beta-sheet floor. Potential gammadelta TCR-binding sites can be inferred from functional mapping of T10 and T22 point mutants and allelic variants. Thus, T22 represents an unusual variant of the MHC-like fold and indicates that gammadelta and alphabeta TCRs interact differently with their respective MHC ligands.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wingren, C -- Crowley, M P -- Degano, M -- Chien, Y -- Wilson, I A -- AI33431/AI/NIAID NIH HHS/ -- CA58896/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2000 Jan 14;287(5451):310-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10634787" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Substitution ; Animals ; Binding Sites ; Crystallography, X-Ray ; Glycosylation ; Histocompatibility Antigens Class I/*chemistry ; Hydrogen Bonding ; Ligands ; Mice ; Models, Molecular ; Point Mutation ; Protein Conformation ; Protein Folding ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry/immunology/metabolism ; Receptors, Antigen, T-Cell, gamma-delta/immunology/*metabolism ; Surface Properties ; beta 2-Microglobulin/chemistry
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2000-04-25
    Description: Susceptibility to murine and human insulin-dependent diabetes mellitus correlates strongly with major histocompatibility complex (MHC) class II I-A or HLA-DQ alleles that lack an aspartic acid at position beta57. I-Ag7 lacks this aspartate and is the only class II allele expressed by the nonobese diabetic mouse. The crystal structure of I-Ag7 was determined at 2.6 angstrom resolution as a complex with a high-affinity peptide from the autoantigen glutamic acid decarboxylase (GAD) 65. I-Ag7 has a substantially wider peptide-binding groove around beta57, which accounts for distinct peptide preferences compared with other MHC class II alleles. Loss of Asp(beta57) leads to an oxyanion hole in I-Ag7 that can be filled by peptide carboxyl residues or, perhaps, through interaction with the T cell receptor.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Corper, A L -- Stratmann, T -- Apostolopoulos, V -- Scott, C A -- Garcia, K C -- Kang, A S -- Wilson, I A -- Teyton, L -- CA58896/CA/NCI NIH HHS/ -- DK55037/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 2000 Apr 21;288(5465):505-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10775108" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Aspartic Acid/chemistry ; Crystallography, X-Ray ; Diabetes Mellitus, Type 1/*immunology ; Drosophila melanogaster ; *Genes, MHC Class II ; Glutamate Decarboxylase/metabolism ; Histocompatibility Antigens Class II/*chemistry/genetics/metabolism ; Humans ; Hydrogen Bonding ; Mice ; Mice, Inbred NOD ; Models, Molecular ; Molecular Sequence Data ; Peptide Library ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Receptors, Antigen, T-Cell/metabolism ; Recombinant Proteins/chemistry/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1991-02-15
    Description: Severe combined immunodeficient (SCID) mice reconstituted with human peripheral blood leukocytes (hu-PBL-SCID mice) have inducible human immune function and may be useful as a small animal model for acquired immunodeficiency syndrome (AIDS) research. Hu-PBL-SCID mice infected with human immunodeficiency virus-1 (HIV-1) contained virus that was recoverable by culture from the peritoneal cavity, spleen, peripheral blood, and lymph nodes for up to 16 weeks after infection; viral sequences were also detected by in situ hybridization and by amplification with the polymerase chain reaction (PCR). Mice could be infected with multiple strains of HIV-1, including LAV-1/Bru, IIIB, MN, SF2, and SF13. HIV-1 infection affected the concentration of human immunoglobulin and the number of CD4+ T cells in the mice. These results support the use of the hu-PBL-SCID mouse for studies of the pathogenesis and treatment of AIDS.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mosier, D E -- Gulizia, R J -- Baird, S M -- Wilson, D B -- Spector, D H -- Spector, S A -- AI-27703/AI/NIAID NIH HHS/ -- AI-29182/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1991 Feb 15;251(4995):791-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Immunology, Medical Biology Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1990441" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Transfusion ; Chimera/*immunology ; *Disease Models, Animal ; *HIV Infections/immunology ; *HIV-1/isolation & purification ; Humans ; Immunologic Deficiency Syndromes/genetics/*immunology ; Lymphocyte Transfusion ; Mice ; Mice, Mutant Strains/*immunology ; Spleen/microbiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-06-15
    Description: Leukocyte adhesion deficiency (LAD) is an inherited disorder of leukocyte function caused by derangements in CD18 expression. The genetic and functional abnormalities in a lymphocyte cell line from a patient with LAD have been corrected by retrovirus-mediated transduction of a functional CD18 gene. Lymphocytes from patients with LAD were exposed to CD18-expressing retrovirus and enriched for cells that express CD11a and CD18 (LFA-1) on the cell surface. Molecular and functional analyses of these cells revealed (i) one copy of proviral sequence per cell, (ii) viral-directed CD18 RNA that exceeded normal endogenous levels, (iii) normal quantities of CD11a and CD18 protein on the cell surface, and (iv) reconstitution of LFA-1-dependent adhesive function.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, J M -- Ping, A J -- Krauss, J C -- Mayo-Bond, L -- Rogers, C E -- Anderson, D C -- Todd, R F -- R01 AI19031/AI/NIAID NIH HHS/ -- R01 AI23521/AI/NIAID NIH HHS/ -- R01 CA39064/CA/NCI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1990 Jun 15;248(4961):1413-6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Internal Medicine, Ann Arbor, MI.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1972597" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD ; Antigens, CD18 ; Antigens, Differentiation/genetics/immunology ; Cell Aggregation ; Cell Line ; Cell Line, Transformed ; Gene Expression ; Genetic Therapy ; Genetic Vectors ; Herpesvirus 4, Human ; Humans ; *Leukocyte-Adhesion Deficiency Syndrome ; Lymphocyte Function-Associated Antigen-1 ; Lymphocytes/immunology ; Membrane Glycoproteins ; Mice ; Nucleic Acid Hybridization ; Receptors, Leukocyte-Adhesion/genetics/immunology ; Retroviridae/*genetics ; Tetradecanoylphorbol Acetate/pharmacology ; *Transfection
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1991-05-31
    Description: The crystal structure of a murine adenosine deaminase complexed with 6-hydroxyl-1,6-dihydropurine ribonucleoside, a nearly ideal transition-state analog, has been determined and refined at 2.4 angstrom resolution. The structure is folded as an eight-stranded parallel alpha/beta barrel with a deep pocket at the beta-barrel COOH-terminal end wherein the inhibitor and a zinc are bound and completely sequestered. The presence of the zinc cofactor and the precise structure of the bound analog were not previously known. The 6R isomer of the analog is very tightly held in place by the coordination of the 6-hydroxyl to the zinc and the formation of nine hydrogen bonds. On the basis of the structure of the complex a stereoselective addition-elimination or SN2 mechanism of the enzyme is proposed with the zinc atom and the Glu and Asp residues playing key roles. A molecular explanation of a hereditary disease caused by several point mutations of an enzyme is also presented.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, D K -- Rudolph, F B -- Quiocho, F A -- CA14030/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1991 May 31;252(5010):1278-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1925539" target="_blank"〉PubMed〈/a〉
    Keywords: Adenosine Deaminase/*chemistry/deficiency/metabolism ; Amino Acid Sequence ; Animals ; Binding Sites ; Catalysis ; Crystallization ; Immunologic Deficiency Syndromes/*enzymology/genetics ; Mice ; Models, Molecular ; Molecular Structure ; Mutation ; Protein Conformation ; Purine Nucleosides/chemistry/*metabolism ; Ribonucleosides/chemistry/*metabolism ; Zinc/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1992-04-03
    Description: Steroid-thyroid hormone receptors typically bind as dimers to DNA sequences that contain repeated elements termed half-sites. NGFI-B, an early response protein and orphan member of this receptor superfamily, binds to a DNA sequence that contains only one half-site (5'-AAAGGTCA-3'). A domain separate from the NGFI-B zinc fingers, termed the A box, was identified and is required for recognition of the two adenine-thymidine (A-T) base pairs at the 5' end of the NGFI-B DNA binding element. In addition, a domain downstream of the zinc fingers of the orphan receptor H-2 region II binding protein, termed the T box, determined binding to tandem repeats of the estrogen receptor half-site (5'-AGGTCA-3').〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wilson, T E -- Paulsen, R E -- Padgett, K A -- Milbrandt, J -- NS01018/NS/NINDS NIH HHS/ -- P01 CA49712/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Apr 3;256(5053):107-10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology, Washington University School of Medicine, St. Louis, MO 63110.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1314418" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Binding Sites ; CHO Cells ; Cell Nucleus/*physiology ; Cricetinae ; DNA/*metabolism ; DNA-Binding Proteins/genetics/*metabolism ; Kinetics ; Mice ; Molecular Sequence Data ; Nuclear Receptor Subfamily 4, Group A, Member 1 ; Oligodeoxyribonucleotides/metabolism ; Polymerase Chain Reaction ; Receptors, Cell Surface/*metabolism ; Receptors, Cytoplasmic and Nuclear ; Receptors, Steroid ; Recombinant Fusion Proteins/metabolism ; Sequence Homology, Nucleic Acid ; Substrate Specificity ; Transcription Factors/genetics/*metabolism ; Transfection ; Zinc Fingers/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1992-08-14
    Description: Class I major histocompatibility complex (MHC) molecules interact with self and foreign peptides of diverse amino acid sequences yet exhibit distinct allele-specific selectivity for peptide binding. The structures of the peptide-binding specificity pockets (subsites) in the groove of murine H-2Kb as well as human histocompatibility antigen class I molecules have been analyzed. Deep but highly conserved pockets at each end of the groove bind the amino and carboxyl termini of peptide through extensive hydrogen bonding and, hence, dictate the orientation of peptide binding. A deep polymorphic pocket in the middle of the groove provides the chemical and structural complementarity for one of the peptide's anchor residues, thereby playing a major role in allele-specific peptide binding. Although one or two shallow pockets in the groove may also interact with specific peptide side chains, their role in the selection of peptide is minor. Thus, usage of a limited number of both deep and shallow pockets in multiple combinations appears to allow the binding of a broad range of peptides. This binding occurs with high affinity, primarily because of extensive interactions with the peptide backbone and the conserved hydrogen bonding network at both termini of the peptide. Interactions between the anchor residue (or residues) and the corresponding allele-specific pocket provide sufficient extra binding affinity not only to enhance specificity but also to endure the presentation of the peptide at the cell surface for recognition by T cells.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Matsumura, M -- Fremont, D H -- Peterson, P A -- Wilson, I A -- CA-09523/CA/NCI NIH HHS/ -- CA-97489/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1992 Aug 14;257(5072):927-34.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1323878" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antigens/chemistry/*metabolism ; Binding Sites ; H-2 Antigens/chemistry/*metabolism ; HLA-A2 Antigen/chemistry ; Histocompatibility Antigens Class I/chemistry/*metabolism ; Hydrogen Bonding ; Mice ; Models, Molecular ; Molecular Sequence Data ; Ovalbumin/chemistry/metabolism ; Peptide Fragments/chemistry/metabolism ; Peptides/chemistry/*metabolism ; Protein Conformation ; Solvents ; Vesicular stomatitis Indiana virus/metabolism ; Viral Proteins/chemistry/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-02-21
    Description: The three-dimensional structure of a specific antibody (Fab 17/9) to a peptide immunogen from influenza virus hemagglutinin [HA1(75-110)] and two independent crystal complexes of this antibody with bound peptide (TyrP100-LeuP108) have been determined by x-ray crystallographic techniques at 2.0 A, 2.9 A, and 3.1 A resolution, respectively. The nonapeptide antigen assumes a type I beta turn in the antibody combining site and interacts primarily with the Fab hypervariable loops L3, H2, and H3. Comparison of the bound and unbound Fab structures shows that a major rearrangement in the H3 loop accompanies antigen binding. This conformational change results in the creation of a binding pocket for the beta turn of the peptide, allowing TyrP105 to be accommodated. The conformation of the peptide bound to the antibody shows similarity to its cognate sequence in the HA1, suggesting a possible mechanism for the cross-reactivity of this Fab with monomeric hemagglutinin. The structures of the free and antigen bound antibodies demonstrate the flexibility of the antibody combining site and provide an example of induced fit as a mechanism for antibody-antigen recognition.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rini, J M -- Schulze-Gahmen, U -- Wilson, I A -- AI-23498/AI/NIAID NIH HHS/ -- New York, N.Y. -- Science. 1992 Feb 21;255(5047):959-65.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology, Scripps Research Institute, La Jolla, CA 92037.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1546293" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Antibodies, Monoclonal/ultrastructure ; *Antigen-Antibody Reactions ; Hemagglutinins, Viral/*immunology ; Hydrogen Bonding ; Immunoglobulin Fab Fragments/*ultrastructure ; Immunoglobulin G/ultrastructure ; In Vitro Techniques ; Influenza A virus/immunology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Motion ; Peptides/chemistry/immunology ; Protein Binding ; Protein Conformation ; X-Ray Diffraction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...