ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • Lunar and Planetary Science and Exploration  (1.481)
  • 2000-2004  (1.211)
  • 1995-1999  (270)
Sammlung
Erscheinungszeitraum
Jahr
  • 1
    Publikationsdatum: 2018-06-11
    Beschreibung: Panoramic Camera (Pancam) images from Meridiani Planum reveal a low-albedo, generally flat, and relatively rock-free surface. Within and around impact craters and fractures, laminated outcrop rocks with higher albedo are observed. Fine-grained materials include dark sand, bright ferric iron-rich dust, angular rock clasts, and millimeter-size spheroidal granules that are eroding out of the laminated rocks. Spectra of sand, clasts, and one dark plains rock are consistent with mafic silicates such as pyroxene and olivine. Spectra of both the spherules and the laminated outcrop materials indicate the presence of crystalline ferric oxides or oxyhydroxides. Atmospheric observations show a steady decline in dust opacity during the mission. Astronomical observations captured solar transits by Phobos and Deimos and time-lapse observations of sunsets.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Science (ISSN 0036-8075); Volume 306; 5702; 1703-1709
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Publikationsdatum: 2019-08-15
    Beschreibung: Jupiter's nonthermal microwave emission, as measured by a global network of 11 radio telescopes, increased dramatically during the Shoemaker-Levy 9 impacts. The increase was wavelength-dependent, varying from approximately 10 percent at 70 to 90 centimeters to approximately 45 percent at 6 and 36 centimeters. The radio spectrum hardened (flattened toward shorter wavelengths) considerably during the week of impacts and continued to harden afterward. After the week of cometary impacts, the flux density began to subside at all wavelengths and was still declining 3 months later. Very Large Array and Australia Telescope images of the brightness distribution showed the enhancement to be localized in longitude and concentrated near the magnetic equator. The evidence therefore suggests that the increase in flux density was caused by a change in the resident particle population, for example, through an energization or spatial redistribution of the emitting particles.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Science (ISSN 0036-8075); 268; 5219; 1879-83
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Publikationsdatum: 2011-08-24
    Beschreibung: Chemical analyses returned by Mars Pathfinder indicate that some rocks may be high in silica, implying differentiated parent materials. Rounded pebbles and cobbles and a possible conglomerate suggest fluvial processes that imply liquid water in equilibrium with the atmosphere and thus a warmer and wetter past. The moment of inertia indicates a central metallic core of 1300 to 2000 kilometers in radius. Composite airborne dust particles appear magnetized by freeze-dried maghemite stain or cement that may have been leached from crustal materials by an active hydrologic cycle. Remote-sensing data at a scale of generally greater than approximately 1 kilometer and an Earth analog correctly predicted a rocky plain safe for landing and roving with a variety of rocks deposited by catastrophic floods that are relatively dust-free.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Science (ISSN 0036-8075); Volume 278; 5344; 1743-8
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Publikationsdatum: 2017-10-02
    Beschreibung: The Thermal Emission Spectrometer on board the Mars Global Surveyor has observed "White Rock" and the data do not indicate the presence of evaporite minerals. We suggest it is a deposit of compacted or weakly cemented aeolian sediment.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Publikationsdatum: 2019-07-17
    Beschreibung: The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. Sponsored by the Human Exploration and Development of Space (HEDS) enterprise, MECA's goal is to evaluate potential geochemical and environmental hazards that may confront future Martian explorers, and to guide HEDS scientists in the development of high fidelity Mars soil simulants. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatics of the soil and its environment, and arrays of material patches to study the abrasive and adhesive properties of soil grains. The instrument will acquire soil samples with a robotic arm equipped with a camera. MECA will examine surface and subsurface soil and dust in order to characterize particle size, shape, hardness, and also physical characteristics that may provide clues to mineralogy. MECA will characterize soil/water mixtures with respect to pH, redox potential, total dissolved ions, and trace toxins. MECA will determine the nature of electrostatic charging associated with excavation of soil, and the influence of ionizing radiation on material properties. It will also observe natural dust accumulation on engineering materials. To accomplish these objectives, MECA is allocated a mass of 10 kg within an enclosure of 35 x 25 x 15 cm. The Wet Chemistry Laboratory (WCL) consists of four identical cells that will accept samples from surface and subsurface regions accessible to the Lander's robotic arm, mix them with water, and perform extensive analysis of the solution. Ion-selective electrodes and related sensors will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential. Experiments will include cyclic voltammetry and anodic stripping voltammetry. Complementary to the Viking experiments, the chemical laboratory will characterize the water-soil solution rather than emitted gases. Nonetheless, through analysis of dissolved gases it will be able to replicate many of the Viking observations related to oxidants. MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. On Earth, the earliest forms of life are preserved as microfossils. The atomic-force microscope will have the required resolution to image down to the scale of terrestrial microfossils and beyond. Mounted on the end of the robot arm, MECA's electrometer actually consists of four types of sensors: an electric field meter, several triboelectricity monitors, an ion gauge, and a thermometer. Tempered only by ultraviolet-light-induced ions and a low-voltage breakdown threshold, the dry, cold, dusty martian environment presents an imposing electrostatic hazard to both robots and humans. The field meter will measure the ambient field on nearby objects while the triboelectric sensors, using identical circuitry, will measure the charge accumulated on test substances as they are dragged through the soil by the arm. The ion chamber, open to the environment, will sense both charged dust and free ions in the air. Over and above the potential threat to electronics, the electrostatic environment holds one of the keys to transport of dust and, consequently, Martian meteorology. Viewed with the robot arm camera, the abrasion and adhesion plates are strategically placed to allow direct observation of the interaction between materials and soils on a macroscopic scale. Materials of graded hardness are placed directly under the robot arm scoop to sense wear and soil hardness. A second array, placed on the lander deck, is deployed after the dust plume of landing has settled. It can be manipulated in a primitive fashion by the arm, first having dirt deposited on it from the scoop and subsequently shaken clean. A third array will passively collect dust from the atmosphere. In addition to objectives related to human exploration, the MECA data set will be rich in information relevant to basic geology, paleoclimate, and exobiology issues. To understand both contemporaneous and ancient processes on Mars, the mineralogy, petrology, and reactivity of Martian surface materials should be constrained. The MECA experiment will shed light on these quantities through its combination of chemistry and microscopy. MECA will be capable of measuring the composition of ancient surface water environments, observing microscopic evidence of geological (and biological?) processes, inferring soil and dust transport, comminution and weathering mechanisms, and characterizing soil horizons that might be encountered during excavation.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Mars Exploration Programme and Sample Return Mission; Feb 01, 1999 - Feb 05, 1999; Paris; France|Studies of Mineralogical and Textural Properties of Martian Soil: An Exobiological Perspective; 45-46
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Publikationsdatum: 2019-07-17
    Beschreibung: The Mars Environmental Compatibility Assessment (MECA) will evaluate the Martian environment for soil and dust-related hazards to human exploration as part of the Mars Surveyor Program 2001 Lander. The integrated MECA payload contains a wet-chemistry laboratory, a microscopy station, an electrometer to characterize the electrostatic environment, and arrays of material patches to study abrasion and adhesion. Heritage will be all-important for low cost micro-missions, and adaptations of instruments developed for the Pathfinder, '98 and '01 Landers should be strong contenders for '03 flights. This talk has three objectives: (1) Familiarize the audience with MECA instrument capabilities; (2) present concepts for stand-alone and/or mobile versions of MECA instruments; and (3) broaden the context of the MECA instruments from human exploration to a comprehensive scientific survey of Mars. Due to time limitations, emphasis will be on the chemistry and microscopy experiments. Ion-selective electrodes and related sensors in MECA's wet-chemistry laboratory will evaluate total dissolved solids, redox potential, pH, and the concentration of many soluble ions and gases in wet Martian soil. These electrodes can detect potentially dangerous heavy-metal ions, emitted pathogenic gases, and the soil's corrosive potential, and experiments will include cyclic voltammetry and anodic stripping. For experiments beyond 2001, enhancements could allow multiple use of the cells (for mobile experiments) and reagent addition (for quantitative mineralogical and exobiological analysis). MECA's microscopy station combines optical and atomic-force microscopy (AFM) in an actively focused, controlled illumination environment to image particles from millimeters to nanometers in size. Careful selection of substrates allows controlled experiments in adhesion, abrasion, hardness, aggregation, magnetic and other properties. Special tools allow primitive manipulation (brushing and scraping) of samples. Soil particle properties including size, shape, color, hardness, adhesive potential (electrostatic and magnetic), will be determined using an array of sample receptacles and collection substrates. The simple, rugged atomic-force microscope will image in the submicron size range and has the capability of performing a particle-by-particle analysis of the dust and soil. Future implementations might enhance the optical microscopy with spectroscopy, or incorporate advanced AFM techniques for thermogravimetric and chemical analysis.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Mars Exploration Programme and Sample Return Mission; Feb 01, 1999 - Feb 05, 1999; Paris; France|Studies of Mineralogical and Textural Properties of Martian Soil: An Exobiological Perspective; 47
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Publikationsdatum: 2017-10-02
    Beschreibung: In May and June of 1994, the NASA/DoD Clementine Mission acquired global, 11- band, multispectral observations of the lunar surface using the ultraviolet-visible (UVVIS) and near-infrared (NIR) camera systems. The global 5-band UVVIS Digital Image Model (DIM) of the Moon at 100 m/pixel was released to the Planetary Data System (PDS) in 2000. The corresponding NIR DIM has been compiled by the U.S. Geological Survey for distribution to the lunar science community. The recently released NIR DIM has six spectral bands (1100, 1250, 1500, 2000, 2600, and 2780 nm) and is delivered in 996 quads at 100 m/pixel (303 pixels/degree). The NIR data were radiometrically corrected, geometrically controlled, and photometrically normalized to form seamless, uniformly illuminated mosaics of the lunar surface.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    Publikationsdatum: 2018-06-11
    Beschreibung: The determination of oxidation conditions for basaltic magmas derived by the melting of planetary mantles is critical to our understanding of the nature and evolution of planetary interiors. Yet, these determinations are compromised in terrestrial and especially extraterrestrial basalts by our analytical and computational methods for estimating oxygen fugacity (fO2). For example, mineralogical barometers (1, 2) can be reduced in effectiveness by subsolidus re-equilibration of mineral assemblages, inversion of mineralogical data to melt characteristics, and deviations of the natural mineral compositions from ideal thermodynamic parameters.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Lunar and Planetary Science XXXV: Special Session: Oxygen in the Solar System, II; LPI-Contrib-1197
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Publikationsdatum: 2018-06-08
    Beschreibung: Between October 4, 1992, and August 1, 1993, concurrent coverage by the Compton Gamma-Ray Observatory (CGRO), Mars Observer (MO), and Ulysses spacecraft, was obtained for 78 Gamma-Ray Bursts (GRBs).
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Publikationsdatum: 2017-10-02
    Beschreibung: The Galileo spacecraft completed its observations of Jupiter's volcanic moon Io in October 2001 with the orbit I32 flyby, during which new local (13-55 m/pixel) and regional (130-400 m/pixel) resolution images and spectroscopic data were returned of the antijovian hemisphere. We have combined a I32 regional mosaic (330 m/pixel) with lower-resolution C21 color data (1.4 km/pixel, Figure 1) and produced a geomorphologic map of the Culann-Tohil area of this hemisphere. Here we present the geologic features, map units, and structures in this region, and give preliminary conclusions about geologic activity for comparison with other regions to better understand Io's geologic evolution.
    Schlagwort(e): Lunar and Planetary Science and Exploration
    Materialart: Lunar and Planetary Science XXXIV; LPI-Contrib-1156
    Format: text
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...