ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-05-03
    Description: Microanalysis of Fe 3+ /Fe in geological samples using synchrotron-based X-ray absorption spectroscopy has become routine since the introduction of standards and model compounds. Existing calibrations commonly use least-squares linear combinations of pre-edge data from standard reference spectra with known coordination number and valence state acquired on powdered samples to avoid preferred orientation. However, application of these methods to single mineral grains is appropriate only for isometric minerals and limits their application to analysis of in situ grains in thin sections. In this work, a calibration suite developed by acquiring X-ray absorption near-edge spectroscopy (XANES) data from amphibole single crystals with the beam polarized along the major optical directions (X, Y, and Z) is employed. Seven different methods for predicting %Fe 3+ were employed based on (1) area-normalized pre-edge peak centroid, (2) the energy of the main absorption edge at the location where the normalized edge intensity has the highest R 2 correlation with Fe 3+ /Fe, (3) the ratio of spectral intensities at two energies determined by highest R 2 correlation with Fe 3+ /Fe, (4) use of the slope (first derivative) at every channel to select the best predictor channel, (5 and 6) partial least-squares models with variable and constant numbers of components, and (7) least absolute shrinkage and selection operator models. The latter three sophisticated multivariate analysis techniques for predicting Fe 3+ /Fe show significant improvements in accuracy over the former four types of univariate models. Fe 3+ /Fe can be measured in randomly oriented amphibole single crystals with an accuracy of ±5.5–6.2% absolute. Multivariate approaches demonstrate that for amphiboles main edge and EXAFS regions contain important features for predicting valence state. This suggests that in this mineral group, local structural changes accommodating site occupancy by Fe 3+ vs. Fe 2+ have a pronounced (and diagnostic) effect on the XAS spectra that can be reliably used to precisely constrain Fe 3+ /Fe.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-10-01
    Description: Measurements of Fe 3+ /Fe in geological materials have been intractable because of lack of access to appropriate facilities, the time-consuming nature of most analyses, and the lack of precision and reproducibility in most techniques. Accurate use of bulk Mössbauer spectroscopy is limited by largely unconstrained recoilless fraction ( f ), which is used to convert spectral peak area ratios into valid estimates of species concentrations and is unique to different mineral groups and compositions. Use of petrographic-scale synchrotron micro-XANES has been handicapped by the lack of a consistent model to relate spectral features to Fe 3+ /Fe. This paper addresses these two deficiencies, focusing specifically on a set of garnet group minerals. Variable-temperature Mössbauer spectra of the Fe 2+ -bearing almandine and Fe 3+ -bearing andradite end-members are used to characterize f in garnets, allowing Fe 3+ /Fe to be measured accurately. Mössbauer spectra of 19 garnets with varying composition were acquired and fit, producing a set of garnet-specific standards for Fe 3+ analyses. High-resolution XANES data were then acquired from these and 15 additional previously studied samples to create a calibration suite representing a broad range of Fe 3+ and garnet composition. Several previously proposed techniques for using simple linear regression methods to predict Fe 3+ /Fe were evaluated, along with the multivariate analysis technique of partial least-squares regression (PLS). Results show that PLS analysis of the entire XANES spectral region yields the most accurate predictions of Fe 3+ in garnets with both robustness and generalizability. Together, these two techniques present reliable choices for bulk and microanalysis of garnet group minerals.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-02
    Description: Visible to near-infrared (V-NIR) remote sensing observations have identified spinel in various locations and lithologies on the Moon. Experimental studies have quantified the FeO content of these spinels ( Jackson et al. 2014 ), however the chromite component is not well constrained. Here we present compositional and spectral analyses of spinel synthesized with varying chromium contents at lunar-like oxygen fugacity ( f O 2 ). Reflectance spectra of the chromium-bearing synthetic spinels (Cr# 1–29) have a narrow (~130 nm wide) absorption feature centered at ~550 nm. The 550 nm feature, attributed to octahedral Cr 3+ , is present over a wide range in iron content (Fe# 8–30) and its strength positively correlates with spinel chromium content [ln(reflectance min ) = –0.0295 Cr# – 0.3708]. Our results provide laboratory characterization for the V-NIR and mid-infrared (mid-IR) spectral properties of spinel synthesized at lunar-like f O 2 . The experimentally determined calibration constrains the Cr# of spinels in the lunar pink spinel anorthosites to low values, potentially Cr# 〈 1. Furthermore, the results suggest the absence of a 550 nm feature in remote spectra of the Dark Mantle Deposits at Sinus Aestuum precludes the presence of a significant chromite component. Combined, the observation of low chromium spinels across the lunar surface argues for large contributions of anorthositic materials in both plutonic and volcanic rocks on the Moon.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-02
    Description: Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe 3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe 3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yield accurate results from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 x 1 μm pixel sizes.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2014-02-15
    Description: A suite of Hawaiian basalts that were variably altered in the presence of SO 2 -rich gases during the current summit eruptive episode at Halemaumau crater, Kilauea, were studied to determine their alteration phase assemblage and reactive pathways using electron microscopy, Mössbauer spectroscopy, and X-ray diffraction. The alteration conditions represent an acid fog environment. Alteration rinds on the basalts vary in thickness from tens of micrometers to the entirety of the rock and are composed of amorphous silica rims (85–95 wt% SiO 2 ) overlain by sulfates. Sulfate mineralogy consisted of gypsum, anhydrite, and natroalunite-jarosite. No phyllosilicates were observed in any alteration assemblages. Phenocrysts and glass were both observed to be extensively reacted during alteration. The Halemaumau samples may provide good analogs for basalt alteration on other rocky planetary bodies, i.e., Mars, Venus, and Mercury, where S is ubiquitous and low fluid/rock ratios are common.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-04-02
    Description: The ferric oxyhydroxide minerals akaganéite and schwertmannite are associated with acidic environments and iron alteration on Earth and may be present on Mars as well. These minerals have a tunnel structure and are crystallographically related. The extended visible region reflectance spectra of these minerals are characterized by a broad Fe 3+ electronic transition centered near 0.92 μm, a reflectance maximum near 0.73 μm, and a shoulder near 0.59 μm. The near-infrared (NIR) reflectance spectra of each of these minerals are dominated by broad overtones and combinations of the H 2 O vibration features. These occur near 1.44–1.48 and 1.98–2.07 μm (~6750–6950 and 4830–5210 cm –1 ) in akaganéite spectra, while in schwertmannite spectra they occur at 1.44–1.48 and 1.95–2.00 μm (~6750–6950 and 5005–5190 cm –1 ). Additional bands due to OH vibrational overtones are found near 1.42 μm (~7040 cm –1 ) in akaganéite and schwertmannite spectra and due to OH combination bands in akaganéite spectra at 2.46 μm (4070 cm –1 ) with weaker components at 2.23–2.42 μm (4134–4492 cm –1 ). A strong and broad band is observed near 2.8–3.1 μm (~3300–3600 cm –1 ) in reflectance and transmittance spectra of akaganéite and schwertmannite due to overlapping OH and H 2 O stretching vibrations. H 2 O bending vibrations occur near 1620 cm –1 (~6.17 μm) in akaganéite spectra and near 1630 cm –1 (~6.13 μm) in schwertmannite spectra with additional bands at lower frequencies due to constrained H 2 O molecules. OH bending vibrations occur near 650 and 850 cm –1 (~15.4 and 11.8 μm) in akaganéite spectra and near 700 cm –1 (~14.3 μm) in schwertmannite spectra. Sulfate vibrations are observed for schwertmannite as a 3 triplet at 1118, 1057, and 1038 cm –1 (~8.9, 9.5, and 9.6 μm), 1 at 982 cm –1 (~10.2 μm), 4 near 690 cm –1 (~14.5 μm), and 2 at 608 cm –1 (~16.5 μm). Fe-O bonds occur near 410–470 cm –1 (μm) for akaganéite and schwertmannite. Both minerals readily absorb H 2 O molecules from the environment and adsorb them onto the mineral surfaces and incorporate them into the tunnels. If akaganéite and schwertmannite were present on the surface of Mars they could enable transport of H 2 O from the near-surface to the atmosphere as the partial pressure of H 2 O varies diurnally.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-10-02
    Description: Remote sensing observations have identified aluminate spinel, in the absence of measureable olivine and pyroxene, as a globally distributed component of the lunar crust. Earlier remote sensing observations and returned samples did not indicate the presence of this component, leaving its geologic significance unclear. Here, we report visible to mid-infrared (V-IR) reflectance (300–25 000 nm) and Mössbauer spectra of aluminate spinels, synthesized at lunar-like oxygen fugacity ( f O 2 ), that vary systematically in Fe abundance. Reflectance spectra of particulate (〈45 mm), nominally stoichiometric aluminate spinels display systematic behavior, with bands at 700, 1000, 2000, and 2800 nm increasing in strength with increasing bulk Fe content. The especially strong bands at 2000 and 2800 are discernible for all spinel compositions and saturate at 〈15 Fe# [Fe/(Mg+Fe) x 100, molar]. Absorption bands at 700 and 1000 nm, collectively referred to as the 1000 nm bands, are weaker and become observable at 〉6 Fe#. Although the 2000 and 2800 nm bands are assigned to Fe 2+ IV electronic transitions, spectra of aluminate spinels with excess Al 2 O 3 demonstrate that the strengths of the 1000 nm bands are related to the abundance of Fe 2+ VI . The abundance of Fe 2+ VI depends on bulk Fe content as well as factors that control the degree of structural order-disorder, such as cooling rate. Consequently the strength of the 1000 nm bands are useful for constraining the Fe content and cooling rate of remotely sensed spinel. Controlling for cooling rate, particle size, and f O 2 , we conclude that spinels with 〉12 Fe# (〈88 Mg#) have observable 1000 nm bands under ambient lunar conditions and that only very Mg-rich spinels lack 1000 nm bands in their spectra. This links remote observations of spinel anorthosite to Mg-Suite magmatism. The combined effects of Fe oxidation state, abundance of coexisting plagioclase, and space weathering have not been explored here, and may add additional constraints. The relative strengths of the distinctive 1000 and 2000 nm bands of the spinels associated with pyroclastic deposits at Sinus Aestuum suggest fast cooling rates, possibly in the absence of an extensive vapor cloud.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-02-15
    Description: Olivine exhibits highly diagnostic absorption features across visible to near-infrared (VNIR) wavelengths due to electronic transitions of Fe 2+ in its crystal structure. The properties of these absorptions vary with composition, enabling compositional analysis of olivine through VNIR spectroscopy, both in the laboratory and through remote sensing. Previous analyses of these trends have relied on natural olivine samples, which are influenced by the presence of minor cations that can affect the diagnostic absorptions. We conduct a systematic analysis of a suite of synthetic (pure Mg/Fe) olivine samples with VNIR (300–2600 nm) reflectance spectroscopy and quantitative spectral deconvolutions. From the full suite of samples described and characterized by Dyar et al. (2009) , we identify a small suite of well-characterized and chemically pure olivine samples that demonstrates consistent and reliable spectral reflectance properties across visible to near-infrared wavelengths. This suite covers the stoichiometric olivine solid solution from x = Mg/(Mg+Fe) = 0 to x = 70 (Fo 0 to Fo 70 ). Because of their tight compositional control, these synthetic samples improve on previous analyses of natural samples. The results of this study provide a new standard for spectral reflectance properties of olivine across visible to near-infrared wavelengths for the compositions present in the suite. We present updated data on the trends in olivine band position as a function of olivine composition, which are the basis for remote compositional evaluation of olivine with visible to near-infrared reflectance spectroscopy. For these reasons, these improved olivine band position trends are of major importance to remote compositional analyses of terrestrial planets.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-15
    Description: Microscale analysis of ferrous:ferric iron ratios in silicate minerals has the potential to constrain geological processes but has proved challenging because textural information and spatial resolution are limited with bulk techniques, and in situ methods have limited spatial resolution. Synchrotron methods, such as XANES, have been hampered by the sensitivity of spectra to crystal orientation and matrix effects. In an attempt to break this nexus, biotites from Tanzania were characterized with a combination of optical microscopy, electron microprobe, Mössbauer analysis, electron backscatter diffraction (EBSD) and X-ray absorption near edge structure (XANES) spectroscopy. Pre-edge and edge characteristics of the Fe K α absorption feature were compared to orientation information derived by EBSD and ferric iron content derived from Mössbauer analysis. Statistically significant correlations between measured spectral features and optic/crystallographic orientation were observed for individual samples. However, orientation corrections derived from these correlations did not reduce the uncertainty in Fe 3+ /Fe tot . The observations are consistent with matrix- and ordering-dependency of the XANES features, and further work is necessary if a general formulation for orientation corrections is to be devised.
    Print ISSN: 0003-004X
    Electronic ISSN: 1945-3027
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...