ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations  (12)
  • 550 - Earth sciences  (11)
  • D58
  • E52
  • J24
  • Q18
  • Volcano monitoring
  • 2005-2009  (23)
Collection
Years
Year
  • 1
    Publication Date: 2017-04-04
    Description: Since 2004, the Istituto Nazionale di Geofisica e Vulcanologia (INGV) is investing important energies for the creation of a continuous GPS network dislocated all over the Italian territory. Data transmission will occur in real time, integrating the experiences already existing in the different INGV institutes and developing a 3-yrs strategy for the new installations. The main targets of the network are represented by active tectonics studies, including also the seismological part as strain accumulation on faults. Within a 3-yrs funding project, it is expected, to realize for the scientific community an infrastructure which is comparable to those existing in countries where advanced crustal deformation studies are carried out. Thus, INGV have co-located the classical seismological instrumentation (broad band seismometers and accelerometers) with GPS receivers to observe and quantify the whole seismic cycle. In this short paper, we describe the CGPS network, the technological choices for the monumentation and the data transmission, the data and metadata management and, finally, the data policy and the deliverables.
    Description: INGV
    Description: Unpublished
    Description: reserved
    Keywords: RING ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.03. Geodesy::04.03.06. Measurements and monitoring
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: report
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-16
    Description: Here we report the results of the analysis of a GPS velocity field in the Umbria–Marche Apennines (central Italy) obtained from the integration of diverse geodetic networks. The velocity field obtained shows a high degree of consistency both spatially and in terms of comparison with independent information, despite the limited time span of some GPS stations. Starting from the velocity field we derive a continuous strain rate field applying a spline interpolation technique which provide a smooth estimate of the deformation field. The main feature of the resulting strain rate field is a continuous high (N50 nanostrain/year) strain rate belt coincident with the area of largest historical and instrumental seismic release. The model directions of the principal axes agree with geological and seismological information indicating NE–SW extension. We transform the strain rate field into geodetic moment rate using the Kostrov formula to evaluate the potential seismic activity of the region and compare it with actual seismic release in the last 720 years from MwN5.5 earthquakes. This comparison highlights a large possible deficit in the seismic release with respect to the overall potential seismic activity, particularly concentrated in the northern part of the study area. This discrepancy can be resolved with either a large amount of seismicity to be released in the near future or significant aseismic slip and deformation.
    Description: Published
    Description: 3-12
    Description: 2T. Deformazione crostale attiva
    Description: JCR Journal
    Description: reserved
    Keywords: GPS ; crustal deformation ; Northen Apennines ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Description: To investigate the kinematics of the Adriatic region we integrate continuous and episodic GPS measurements and ${M_w} 〉 4.5$ earthquake slip vectors selected from the Regional Centroid Moment Tensor (RCMT) catalogue. Coherent motion of GPS sites in the Po Valley, in Apulia and in the Hyblean Plateau allows us to estimate geodetically constrained angular velocities for these regions. The predictions of the GPS-inferred angular velocities are compared with the earthquake slip vectors, showing that the seismically-expressed deformation at the microplate boundaries is consistent with the observed geodetic motion. The remarkable consistency between geodetic, seismological and geological evidence of active tectonics, suggests that active deformation in the Central Adriatic is controlled by the relative motion between the Adria and Apulia microplates. The microplates angular rotation rates are then compared with the rotation rates calculated with a simple block model supporting the hypotheses (1) that Apulia forms a single microplate with the Ionian Sea and possibly with the Hyblean region and (2) that Adria and Apulia rotate in such a way as to accommodate the Eurasia-Nubia relative motion. We suggest that the present-day microplate configuration follows a recent fragmentation of the Adriatic promontory that during the Neogene rigidly transferred the Africa motion to the orogenic belts that now surround the Adriatic region.
    Description: Published
    Description: B12413
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Adria ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-04-04
    Description: In this work we present seismological and ground deformation evidence for the phase preparing the July 18 to August 9, 2001 flank eruption at Etna. The analysis performed, through data from the permanent seismic and ground deformation networks, highlighted a strong relationship between seismic strain release at depth and surface deformation. This joint analysis provided strong constraints on the magma rising mechanisms. We show that in the last ten years, after the 1991–1993 eruption, an overall accumulation of tension has affected the volcano. Then we investigate the months preceding the 2001 eruption. In particular, we analyse the strong seismic swarm on April 20–24, 2001, comprising more than 200 events (Mmax = 3.6) with prevalent dextral shear fault mechanisms in the western flank. The swarm showed a ca. NE-SW earthquake alignment which, in agreement with previous cases, can be interpreted as the response of the medium to an intrusive process along the approximately NNW-SSE volcano-genetic trend. These mechanisms, leading to the July 18 to August 9, 2001 flank eruption, are analogous to ones observed some months before the 1991–1993 flank eruption and, more recently, in January 1998 before the February-November 1999 summit eruption.
    Description: Published
    Description: 1469-1487
    Description: partially_open
    Keywords: Ground deformation ; volcano seismology ; Mt. Etna Volcano ; intrusive mechanism ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations ; 04. Solid Earth::04.06. Seismology::04.06.08. Volcano seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 513 bytes
    Format: 878745 bytes
    Format: text/html
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-04-04
    Description: We report on new paleomagnetic and anisotropy of magnetic susceptibility (AMS) data from Plio-Pleistocene sedimentary units from Corinth and Megara basins (Peloponnesus, Greece). Paleomagnetic results show that Megara basin has undergone vertical axis CW rotation since the Pliocene, while Corinth has rotated CCW during the same period of time. These results indicate that the overall deformation in central Greece has been achieved by complex interactions of mostly rigid, rotating, fault bounded crustal blocks. The comparison of paleomagnetic results and existing GPS data shows that the boundaries of the rigid blocks in central Greece have changed over time, with faulting migrating into the hanging walls, sometimes changing in orientation. The Megara basin belonged to the Beotia-Locris block in the past but has now been incorporated into the Peloponnesus block, possibly because the faulting in the Gulf of Corinth has propagated both north and east. Paleomagnetic and GPS data from Megara and Corinth basins have significant implications for the deformation style of the continental lithosphere. In areas of distributed deformation the continental lithosphere behaves instantaneously like a small number of rigid blocks with well-defined boundaries. This means that these boundaries could be detected with only few years of observations with GPS. However, on a larger time interval the block boundaries change with time as the active fault moves. Paleomagnetic studies distinguishing differential rotational domains provide a useful tool to map how block boundaries change with time.
    Description: Published
    Description: 1-15
    Description: reserved
    Keywords: Paleomagnetism ; Greece, block rotations ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1167012 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The present-day arcuate shape of the Calabrian Arc has been accomplished during Neogene and Early Pleistocene by large and opposite vertical axis rotations along the two arms of the Arc. Clockwise (CW) rotations have been systematically registered in Sicily and Calabria, whereas counterclockwise (CCW) rotations were measured in Southern Apennines. Such opposite vertical axis rotations ceased in the uppermost part of the Lower Pleistocene (about 1 Ma ago) along almost the entire Calabrian Arc and are not observed in the present-day GPS velocity field. The end of the Calabrian Arc bending during the Quaternary marks a decrease in the efficiency of the tectonic processes related to the long-lived subduction of the Ionian slab, which caused the halting of the back-arc opening in the Southern Tyrrhenian Sea.
    Description: Published
    Description: 259-274
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: Calabrian Arc ; subduction ; paleomagnetism ; GPS ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: We study five high precision leveling lines located around the epicentral area of 13 January 1915, Mw = 6.7 Fucino earthquake (Italy), that possibly recorded late stage postseismic relaxation movements. The geodetic signal is expected to comprise both large-scale uplift of the Apennines and postseismic relaxation effects. In order to verify this hypothesis and to estimate the amount of each contribution, we compute gravitational visco-elastic postseismic relaxation by inverting leveling data. Results indicate that the elastic upper crust is relatively thin (about 10 km) and post-seismic contribution could be set at 30% of the geodetic signal. Model parameters are consistent with previous knowledge of the 1915 Fucino earthquake source, local seismic hypocentral determinations and crustal models derived from surface waves.
    Description: Published
    Description: L22307
    Description: 3.2. Tettonica attiva
    Description: JCR Journal
    Description: reserved
    Keywords: postseismic slip ; leveling data ; 1915 Fucino earthquake ; modeling ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: We use continuous GPS observations to investigate the rate of strain accumulation in the area affected by the 1976 Friuli earthquakes. Comparison between the motion predicted by the rigid-rotation of Adria and the shortening observed across the study area suggests that the 2.0 ± 0.2 mm/yr motion of Adria is entirely absorbed in the southern Alps through thrusting and crustal thickening with very little or no motion transferred to the north.We use elastic dislocation modelling to investigate the rate of interseismic loading and the geometry of the shear zone at depth. The best-fit solution indicates that a northward-dipping creeping dislocation, whose edge is located within a 50 km wide area beneath the southern Alps, accomodates 2.1 ± 0.5 mm/yr of the Adria motion. Limited resolution on locking depth (acceptable values between 0 and 25 km) and trade-off between dip and slip do not allow a precise reconstruction of the dislocation geometry. The range of acceptable model parameters is consistent with a 20 -dipping dislocation, locked above 10 km depth and slipping at 2.4 mm/yr, whose geometry is suggested by seismological informations.
    Description: Published
    Description: reserved
    Keywords: crustal deformation ; 1976 Friuli earthquakes ; Alps ; interseismic ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 357323 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    American Geophysical Union
    Publication Date: 2017-04-03
    Description: We investigate crustal deformation along the Eurasia-Nubia plate boundary in Calabria and Sicily revealed by the GPS velocity field obtained by the combination of continuous site velocities with previous results from episodic campaigns. We recognize two distinct crustal domains characterized by different motions and styles of deformation. Convergence in Sicily is taken up by crustal shortening along the former Tyrrhenian back arc passive margin, in agreement with seismological data and geological evidence of recent cessation of deformation along the Plio-Pleistocene subduction front. The analysis of the GPS data and the consistency between earthquake slip vectors and convergence direction suggest that Eu-Nu convergence in Sicily does not require intermediate crustal blocks. Significant Eurasia ( 3 mm/yr to NNE) and Nubia-fixed ( 5 mm/yr to ESE) residual velocities in Calabria suggest instead the presence of an intermediate crustal block which can be interpreted as a forearc sliver or as an independent Ionian block. According to the first hypothesis, subduction is still active in the Ionian wedge, although we find no evidence for active back arc spreading in the Tyrrhenian Sea. The N115 E oriented Sicily-Calabria GPS relative motion is consistent with the extension observed during the 1908 Mw 7.1 Messina earthquake. We suggest that up to 3 mm/yr ( 80%) of this estimated relative motion between Sicily and the Calabrian Arc may be taken up in the Messina Straits.
    Description: Published
    Description: 1-16
    Description: reserved
    Keywords: GPS ; Calabria, Sicily, Active tectonics ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 1237090 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: We present the first GPS estimate of crustal extension in the central Apennines (Italy) through the analysis of the deformation of a sub-network of the National GPS Geodetic network IGM95 in the interval 1994–1999. The selected sub-network spans the entire active deformation belt perpendicularly to its axis and allows the evaluation of (1) the total extension rate absorbed in this sector of the Apennines and (2) the seismogenic potential of the normal faults active in the Late Pleistocene-Holocene interval within the network. Results of this reoccupation are consistent with an extensional strain rate of 0.18×10−6 yr−1 concentrated in an area of about 35 km width, giving an average extension rate of 6±2 mm/yr across the central Apennines. The pattern of active deformation suggests active elastic strain accumulation on the westernmost of the two fault systems active in the Late Pleistocene-Holocene interval and may also suggest the presence of another active fault system not recognized so far.
    Description: Published
    Description: 2121-2124
    Description: reserved
    Keywords: GPS ; Apennines, Active extension ; 04. Solid Earth::04.03. Geodesy::04.03.01. Crustal deformations
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Format: 211231 bytes
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...