ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-09
    Description: This study was performed to investigate gas formation and gas saturation conditions related to acoustic turbidity in shallow (∼40 m deep) marine basins. The Arkona Basin, Baltic Sea, with its organic-rich fine-grained surface sediment provides an ideal “Natural Laboratory” to characterise free gas using seismic, geoacoustic, and geochemical methods. The area of acoustic turbidity covers about 1500 km2 of the central Arkona Basin, corresponding to areas where organic-rich post-glacial sediments exceed 4–6 m in thickness. The highest concentration of pore water methane (7660 μmol L−1), found in areas of high acoustic turbidity, was near the calculated lower limit of methane solubility for the measured in situ temperature, salinity, and pressure. Pore water methane concentration decreased to near 4 μmol L−1 in areas outside of the zone of high acoustic turbidity. Stable carbon (−70.7‰ to −92.3‰ PDB) and hydrogen (−124‰ to −185‰ SMOW) isotope values of methane indicate that methane is predominantly formed by microbial CO2 reduction in Arkona Basin surface sediments and rules out significant contributions of other sources.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-08-09
    Description: Hydrous CaMg-carbonate was synthesized at temperatures of 40 degrees, 60 degrees and 80 degrees C in the laboratory. This material has very similar mineralogical characteristics to natural disordered dolomite from the Coorong region in South Australia. Besides the dolomite variable amounts of amorphous carbonate are present in all samples. The oxygen isotope compositions of synthesized bulk carbonate samples (e.g., amorphous carbonate plus dolomite) plot significantly lower than the Northrop and Clayton (1966) dolomite-water equilibrium. Fractionated degassing of the samples, however, revealed relatively low oxygen isotope values for fast-reacting (using 100% H3PO4) amorphous carbonate. In contrast, slow-reacting dolomite has more positive oxygen isotope values, and calculated carbonate-water oxygen isotope fractionation values are close to strongest known dolomite-water oxygen isotope fractionation published earlier on. Variations of reaction/stabilization temperatures during synthesis gave evidence for dolomite formation from hypersaline solutions by a dissolution/reprecipitation process. It is likely that amorphous carbonate has been a problem in defining the dolomite-water fractionation in the past. Moreover, dolomite-associated amorphous carbonate contents probably led to incorrect speculations about lower oxygen isotope fractionation in a so-called protodolomite-water system. Copyright (c) 2005 Elsevier Ltd.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-09
    Description: The element compositions Si, Ca and Al of up to 2 1.1 ka old sediments in about 10 in long cores from the southern basin of the Shaban and Kebrit deeps in the northern Red Sea allowed a classification of major sediment types in carbonate sands and -muds and siliceous oozes. A FeOOH-enriched sediment horizon and a few samples with high Zn values in the Kebrit core indicate a hydrothermal origin probably near the brine-sea water interface with subsequent transport of hydrothermal compounds into the deep sediments. High organic carbon contents up to 8.4% are positively correlated with the Ba concentrations, which suggests that high bioproductivity, and rapid deposition (C-14 dating suggests a sedimentation rate near 70 cm/ka) led to the formation of sapropelic sediments between 11.8 and 13.6 ka (Younger Dryas). Organic petrological observations showed that the sediment organic material largely consists of 〈20 gm-sized roundish fecal pellets (intimate mixtures of organic matter and inorganic constituents) and bituminite. Terrestrial organic matter (pollens of land plants, fusinite etc.) is very rare in the sediment cores from both deeps. Organic-geochemical investigations of kerogens and organic extracts show that a significant (hydrothermal) hydrocarbon production did not occur in near-surface sediments of the Shaban and Kebrit deeps. Rock Eval pyrolysis of kerogens characterised the organic matter to be of type II quality. The delta C-13 values of the kerogens from the most prominent sapropel in the Shaban deep indicate an enrichment of(C-12-rich) nutrients in the water column during postglacial sapropel formation in the Younger Dryas. The n-alkane spectra are dominated by short chain lengths between n-C-15 and n-C-25 Prevailing n-C-15 to n-C-25 alkanes in low mature sediments are indicative of algal and microbial source. Pristane/phytane ratios are generally low (〈 I to similar to 1) which suggests that anoxic conditions prevailed within the anaerobic brine-filled deeps for the whole time covered by the sediments. This again indicates that sapropel formation was caused by high bioproductivity in the northern Red Sea rather than episodic stagnation with better preservation of the organic matter. Long-chain alkenones and sterols are the dominating compounds of the lipid fraction. Cholesterol contents in the sediment cores reflect phases of eukaryotes production in the water column, whereas the positive correlations of dinosterol with TOC and the amounts of total extract suggests that the major organic carbon source in the northern Red Sea during postglacial high-productivity stages were dinoflagellates. Another important carbon source, however, is indicated by the occurrence of 22,29,30-trisnorhopan-21 -one (TNH). Although the formation of TNH from its precursors is not fully understood, this compound probably results from microbial. degradation of intact bacteriohopanepolyols (BHP), which can be used as indicators for bacterial abundances and phyla. TNH is most likely produced at the brine-sea water interface where sedimenting organic matter accumulates and, if the redoxcline corresponds to the density gradient, the organic matter is subjected to efficient aerobic bacterial degradation processes. However, during high bioproductivity stage (Younger Dryas) the redoxcline was probably higher in the water column and thus, a significant TNH production at the brine-sea water interface did not occur at times of sapropel formation in the northern Red Sea deeps. (C) 2007 Elsevier B.V All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-08-03
    Description: Shallow gas hydrate accumulation in mud volcanoes in the Costa Rica forearc was postulated before, but is now proven by a find in surface sediments at the southwestern slope of the recently discovered Mound 11, a mud volcano located 30 km arcward from the trench, on the continental slope off Costa Rica at 1000 m water depth. The gas hydrate content of the recovered core was up to 60% and consisted mainly of methane hydrate. The δ13C (−45.2‰ to −43.3‰ PDB) and δD (−125‰ to −143‰ SMOW) values of methane from sampled hydrates indicate a deep (thermogenic) source of fossil methane generated by degradation of organic matter within the subducted slab. Near surface faults and deeply cutting faults, identified in multichannel seismic reflection profiles, provide pathways for fluid migration through the ∼6 km thick margin wedge into the ∼1 km of overlying terrigenous sediments. Mound 11 overlies a bottom simulating reflection at 340 m bsf and transport of sediment and methane-rich fluids from greater depth through the gas hydrate stability zone is suggested. The upper core segment (0–150 cm bsf) is composed of mud breccia and fluid channels, which indicates mud expulsion from Mound 11. Anaerobic methane oxidation is indicated by sulfate and methane depletion, hydrogen sulfide formation and an increase of alkalinity in the interface between the upper sediment unit and the lower laminated sediment unit where the gas hydrate is interbedded. The seawater-like sulfate and chloride concentrations and the concave up chloride profile measured in pore water of the upper core unit may rather reflect seawater influx than fluid outflow at this sampling site. The inflow is possibly driven by (episodic) mud and fluid discharge in the center of the mud mound creating shallow convective circulation cells.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Four volcanic ash-bearing marine sediment cores and one ash-free reference core were examined during research cruise RV Meteor 54/2 offshore Nicaragua and Costa Rica to investigate the chemical composition of pore waters related to volcanic ash alteration. Sediments were composed of terrigenous matter derived from the adjacent continent and contained several distinct ash layers. Biogenic opal and carbonate were only minor components. The terrigenous fraction was mainly composed of smectite and other clay minerals while the pore water composition was strongly affected by the anaerobic degradation of particulate organic matter via microbial sulphate reduction. The alteration of volcanic matter showed only a minor effect on major element concentrations in pore waters. This is in contrast to prior studies based on long sediment cores taken during the DSDP, where deep sediments always showed distinct signs of volcanic ash alteration. The missing signal of ash alteration is probably caused by low reaction rates and the high background concentration of major dissolved ions in the seawater-derived pore fluids. Dissolved silica concentrations were, however, significantly enriched in ash-bearing cores and showed no relation to the low but variable contents of biogenic opal. Hence, the data suggest that silica concentrations were enhanced by ash dissolution. Thus, the dissolved silica profile measured in one of the sediment cores was used to derive the in-situ dissolution rate of volcanic glass particles in marine sediments. A non-steady state model was run over a period of 43 kyr applying a constant pH of 7.30 and a dissolved Al concentration of 0.05 μM. The kinetic constant (AA) was varied systematically to fit the model to the measured dissolved silica-depth profile. The best fit to the data was obtained applying AA = 1.3 × 10−U9 mol of Si cm− 2 s− 1. This in-situ rate of ash dissolution at the seafloor is three orders of magnitude smaller than the rate of ash dissolution determined in previous laboratory experiments. Our results therefore imply that field investigations are necessary to accurately predict natural dissolution rates of volcanic glasses in marine sediments.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-08-08
    Description: The sediments at a site situated among high-temperature vents in the Grimsey Graben (Tjornes Fracture Zone, north of Iceland) exhibit features of strong hydrothermal alteration: (1) almost total dissolution of the volcaniclastic material composing the background sediment; (2) sulfate and sulfide precipitation; (3) kaolinitisation. Smectite, precipitated in the shallowest sediment, is gradually replaced downward by mixed-layer kaolinite/smectite and pure, well-crystallised kaolinite. The kaolinite/smectite is interstratified with up to 10% swelling smectitic layers. According to the oxygen isotope composition kaolinite/smectite mixed-layer mineral most likely formed at temperatures near 160 degrees C. The vertical sequence kaolinite -〉 kaolinite/smectite -〉 smectite as well as the distinct zonation across the kaolinitic veins (almost pure kaolinite in the central zone and kaolinite/smectite along the rim) suggest hydrothermal transformation of initially formed smectite -〉 kaolinite/smectite -〉 kaolinite. Most probably this conversion occurred in an evolving (from alkaline to slightly acidic) hydrothermal environment. (c) 2004 Elsevier B.V. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: The Loop Current mediating the oceanic heat and salt flux from the Caribbean Sea into the Atlantic Ocean and its interference with the Mississippi River discharge are critical for both the regional climate in the Gulf of Mexico area and the water vapor transport towards high northern latitudes. We present a 400-kyr record of sea surface temperature and local surface salinity from the northeastern Gulf of Mexico (IMAGES core MD02-2575) approximated from combined planktonic foraminiferal δ18O and Mg/Ca, which reflects the temporal dynamics of the Loop Current and its relationship to both varying Mississippi discharge and evolution of the Western Hemisphere Warm pool. The reconstructed sea surface temperature and salinity reveal glacial/interglacial amplitudes that are significantly larger than in the Western Hemisphere Warm pool. Sea surface freshening is observed during the extreme cool periods of Marine Isotope Stages 2, 8, and 10, caused by the strengthened Mississippi discharge which spread widely across the Gulf favored by the less established Loop Current. Interglacial and interstadial sea-surface conditions, instead, point to a strengthened, northward flowing Loop Current in line with the northward position of the Intertropical Convergence Zone, allowing northeastern Gulf of Mexico surface hydrographic conditions to approach those of the Caribbean. At these times, the Mississippi discharge was low and deflected westward, promoted by the extended Loop Current. Previously described deglacial megadischarge events further to the west did not affect the northeastern Gulf of Mexico hydrography, implying that meltwater routing from the Laurentide Ice Sheet via the Mississippi River is unlikely to have affected Atlantic Meridional Overturning Circulation.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-01-09
    Description: To better understand recruitment variability in small pelagic fish like sprat, it is important to know when during the extended spawning season the successful recruits are predominantly produced and which environmental factors determine potential survival windows. Here, we inferred the temporal origin of 2-year classes (2002–2003) of western and central Baltic sprat by means of otolith microstructure analysis, and found that in both years recruits mainly originated from the summer months June and July. In both years, this period coincided with temperature conditions in the surface layer of 〉12 °C and peak seasonal abundance of the largest copepod stages of Acartia spp., the major prey item of sprat larvae. The peaks in seasonal sprat egg abundance, however, occurred in April 2002 and March 2003 and therefore about 1–2 months earlier than the long-term mean spawning peak of sprat in this area (end of May/beginning of June). We hypothesize that increased temperatures in the bottom layer of the Baltic, where the pre-spawning sprat stock concentrates during winter months, potentially caused this shift in sprat spawning patterns, although early spring temperatures and feeding conditions in upper water layers were still unfavourable for larval survival. Sprat recruitment, however, was comparatively strong in both 2002 and 2003, suggesting that summer born individuals had high enough survival rates to compensate for the spawning shift, possibly due to high summer temperatures, limited dispersion, and low predation mortalities by Baltic cod as the major predator of sprat. Recruits were on average younger in 2003 than 2002, yet length distributions in October were almost identical, likely because a period of substantially higher temperatures in July/August 2003 promoted faster initial (larval) growth of survivors. Given the strength of the 2003 year class, in spite of lower overall prey concentrations in 2003 than 2002 in the study area, our findings appear to emphasise the paramount importance of summer temperatures as the recruitment determinant in Baltic sprat
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-07-18
    Description: The ultramafic-hosted Logatchev hydrothermal field (LHF) on the Mid-Atlantic Ridge is characterized by high hydrogen and methane contents in the subseafloor, which support a specialized microbial community of phylogenetically diverse, hydrogen-oxidizing chemolithoautotrophs. We compared the prokaryotic communities of three sites located in the LHF and encountered a predominance of archaeal sequences affiliated with methanogenic Methanococcales at all three. However, the bacterial composition varied in accordance with differences in fluid chemistry between the three sites investigated. An increase in hydrogen seemed to coincide with the diversification of hydrogen-oxidizing bacteria. This might indicate that the host rock indirectly selects this specific group of bacteria. However, next to hydrogen availability further factors are evident (e.g. mixing of hot reduced hydrothermal fluids with cold oxygenated seawater), which have a significant impact on the distribution of microorganisms
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-07-21
    Description: The sediment temperature distribution at mud volcanoes provides insights into their activity and into the occurrence of gas hydrates. If ambient pressure and temperature conditions are close to the limits of the gas hydrate stability field, the sediment temperature distribution not only limits the occurrence of gas hydrates, but is itself influenced by heat production and consumption related to the formation and dissociation of gas hydrates. Located in the Sorokin Trough in the northern Black Sea, the Dvurechenskii mud volcano (DMV) was in the focus of detailed investigations during the M72/2 and M73/3a cruises of the German R/V Meteor and the ROV Quest 4000 m in February and March 2007. A large number of in-situ sediment temperature measurements were conducted from the ROV and with a sensor-equipped gravity corer. Gas hydrates were sampled in pressurized cores using a dynamic autoclave piston corer (DAPC). The thermal structure of the DMV suggests a regime of fluid flow at rates decreasing from the summit towards the edges of the mud volcano, accompanied by intermittent mud expulsion at the summit. Modeled gas hydrate dissociation temperatures reveal that the gas hydrates at the DMV are very close to the stability limits. Changes in heat flow due to variable seepage rates probably do not result in changes in sediment temperature but are compensated by gas hydrate dissociation and formation. (C) 2009 Elsevier Ltd. All rights reserved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...