ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Amino Acid Sequence  (12)
  • *Bacterial Physiological Phenomena
  • Bioethics
  • American Association for the Advancement of Science (AAAS)  (15)
  • American Association of Petroleum Geologists (AAPG)
  • Cambridge University Press
  • 2005-2009  (8)
  • 1995-1999  (7)
  • 1965-1969
Collection
Publisher
  • American Association for the Advancement of Science (AAAS)  (15)
  • American Association of Petroleum Geologists (AAPG)
  • Cambridge University Press
Years
Year
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-02-13
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, M -- New York, N.Y. -- Science. 1999 Jan 29;283(5402):617, 619.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9988653" target="_blank"〉PubMed〈/a〉
    Keywords: Bioethics ; Cell Division ; *Cloning, Organism/legislation & jurisprudence ; Embryo Research ; *Embryo, Mammalian/cytology ; Ethical Review ; Government Regulation ; Humans ; Korea ; Nuclear Transfer Techniques ; Public Policy
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-01-23
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, M -- New York, N.Y. -- Science. 1999 Jan 1;283(5398):16-7.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9917255" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bioethics ; *Cloning, Organism ; Embryo Research ; Female ; Government Regulation ; Humans ; Korea ; Nuclear Transfer Techniques ; Research
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-05-02
    Description: Analysis of viral and bacterial pathogenesis has revealed common themes in the ways in which plants and animals respond to pathogenic agents. Pathogenic bacteria use macromolecule delivery systems (types III and IV) to deliver microbial avirulence proteins and transfer DNA-protein complexes directly into plant cells. The molecular events that constitute critical steps of plant-pathogen interactions seem to involve ligand-receptor mechanisms for pathogen recognition and the induction of signal transduction pathways in the plant that lead to defense responses. Unraveling the molecular basis of disease resistance pathways has laid a foundation for the rational design of crop protection strategies.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Baker, B -- Zambryski, P -- Staskawicz, B -- Dinesh-Kumar, S P -- GM45244/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1997 May 2;276(5313):726-33.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9115193" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Arabidopsis/genetics/microbiology/physiology/virology ; Bacteria/genetics ; *Bacterial Physiological Phenomena ; Biological Evolution ; Fungi/physiology ; Genes, Plant ; Immunity, Innate ; Plant Diseases/*microbiology ; Plant Physiological Phenomena ; Plant Proteins/*physiology ; Plants/genetics/*microbiology/virology ; *Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1997-08-08
    Description: TRAIL (also called Apo2L) belongs to the tumor necrosis factor family, activates rapid apoptosis in tumor cells, and binds to the death-signaling receptor DR4. Two additional TRAIL receptors were identified. The receptor designated death receptor 5 (DR5) contained a cytoplasmic death domain and induced apoptosis much like DR4. The receptor designated decoy receptor 1 (DcR1) displayed properties of a glycophospholipid-anchored cell surface protein. DcR1 acted as a decoy receptor that inhibited TRAIL signaling. Thus, a cell surface mechanism exists for the regulation of cellular responsiveness to pro-apoptotic stimuli.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sheridan, J P -- Marsters, S A -- Pitti, R M -- Gurney, A -- Skubatch, M -- Baldwin, D -- Ramakrishnan, L -- Gray, C L -- Baker, K -- Wood, W I -- Goddard, A D -- Godowski, P -- Ashkenazi, A -- New York, N.Y. -- Science. 1997 Aug 8;277(5327):818-21.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Oncology, Genentech, South San Francisco, CA 94080-4918, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/9242611" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Apoptosis ; Apoptosis Regulatory Proteins ; Cell Membrane/metabolism ; Cells, Cultured ; GPI-Linked Proteins ; Glycosylphosphatidylinositols/metabolism ; HeLa Cells ; Humans ; Ligands ; Membrane Glycoproteins/*metabolism ; Molecular Sequence Data ; NF-kappa B/metabolism ; Receptors, TNF-Related Apoptosis-Inducing Ligand ; Receptors, Tumor Necrosis Factor/chemistry/genetics/*metabolism ; Signal Transduction ; TNF-Related Apoptosis-Inducing Ligand ; Transfection ; Tumor Cells, Cultured ; Tumor Necrosis Factor Decoy Receptors ; Tumor Necrosis Factor-alpha/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2007-12-08
    Description: Many bacterial pathogens have long, slender pili through which they adhere to host cells. The crystal structure of the major pilin subunit from the Gram-positive human pathogen Streptococcus pyogenes at 2.2 angstroms resolution reveals an extended structure comprising two all-beta domains. The molecules associate in columns through the crystal, with each carboxyl terminus adjacent to a conserved lysine of the next molecule. This lysine forms the isopeptide bonds that link the subunits in native pili, validating the relevance of the crystal assembly. Each subunit contains two lysine-asparagine isopeptide bonds generated by an intramolecular reaction, and we find evidence for similar isopeptide bonds in other cell surface proteins of Gram-positive bacteria. The present structure explains the strength and stability of such Gram-positive pili and could facilitate vaccine development.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kang, Hae Joo -- Coulibaly, Fasseli -- Clow, Fiona -- Proft, Thomas -- Baker, Edward N -- New York, N.Y. -- Science. 2007 Dec 7;318(5856):1625-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland 1010, New Zealand.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18063798" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Asparagine/chemistry ; Chemistry, Physical ; Crystallography, X-Ray ; Fimbriae Proteins/*chemistry ; Fimbriae, Bacterial/*chemistry/ultrastructure ; Hydrogen Bonding ; Lysine/chemistry ; Models, Molecular ; Molecular Sequence Data ; Peptides/chemistry ; Physicochemical Phenomena ; Protein Conformation ; Protein Structure, Tertiary ; Protein Subunits/chemistry ; Streptococcus pyogenes/*chemistry/metabolism/*ultrastructure
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2008-03-29
    Description: Schizophrenia is a devastating neurodevelopmental disorder whose genetic influences remain elusive. We hypothesize that individually rare structural variants contribute to the illness. Microdeletions and microduplications 〉100 kilobases were identified by microarray comparative genomic hybridization of genomic DNA from 150 individuals with schizophrenia and 268 ancestry-matched controls. All variants were validated by high-resolution platforms. Novel deletions and duplications of genes were present in 5% of controls versus 15% of cases and 20% of young-onset cases, both highly significant differences. The association was independently replicated in patients with childhood-onset schizophrenia as compared with their parents. Mutations in cases disrupted genes disproportionately from signaling networks controlling neurodevelopment, including neuregulin and glutamate pathways. These results suggest that multiple, individually rare mutations altering genes in neurodevelopmental pathways contribute to schizophrenia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Walsh, Tom -- McClellan, Jon M -- McCarthy, Shane E -- Addington, Anjene M -- Pierce, Sarah B -- Cooper, Greg M -- Nord, Alex S -- Kusenda, Mary -- Malhotra, Dheeraj -- Bhandari, Abhishek -- Stray, Sunday M -- Rippey, Caitlin F -- Roccanova, Patricia -- Makarov, Vlad -- Lakshmi, B -- Findling, Robert L -- Sikich, Linmarie -- Stromberg, Thomas -- Merriman, Barry -- Gogtay, Nitin -- Butler, Philip -- Eckstrand, Kristen -- Noory, Laila -- Gochman, Peter -- Long, Robert -- Chen, Zugen -- Davis, Sean -- Baker, Carl -- Eichler, Evan E -- Meltzer, Paul S -- Nelson, Stanley F -- Singleton, Andrew B -- Lee, Ming K -- Rapoport, Judith L -- King, Mary-Claire -- Sebat, Jonathan -- HD043569/HD/NICHD NIH HHS/ -- M01 RR000046/RR/NCRR NIH HHS/ -- MH061355/MH/NIMH NIH HHS/ -- MH061464/MH/NIMH NIH HHS/ -- MH061528/MH/NIMH NIH HHS/ -- NS052108/NS/NINDS NIH HHS/ -- R01 HD043569/HD/NICHD NIH HHS/ -- RR000046/RR/NCRR NIH HHS/ -- RR025014/RR/NCRR NIH HHS/ -- U01 MH061355/MH/NIMH NIH HHS/ -- U01 MH061464/MH/NIMH NIH HHS/ -- U01 MH061528/MH/NIMH NIH HHS/ -- U24 NS052108/NS/NINDS NIH HHS/ -- UL1 RR025014/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2008 Apr 25;320(5875):539-43. doi: 10.1126/science.1155174. Epub 2008 Mar 27.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, University of Washington, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18369103" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Age of Onset ; Amino Acid Sequence ; Brain/cytology/*growth & development/metabolism ; Case-Control Studies ; Child ; Excitatory Amino Acid Transporter 1/chemistry/genetics/physiology ; Female ; *Gene Deletion ; *Gene Duplication ; Genetic Predisposition to Disease ; Genome, Human ; Humans ; Male ; Molecular Sequence Data ; *Mutation ; Neurons/cytology/physiology ; Oligonucleotide Array Sequence Analysis ; Polymorphism, Single Nucleotide ; Receptor, Epidermal Growth Factor/chemistry/genetics/physiology ; Receptor, ErbB-4 ; Schizophrenia/*genetics/physiopathology ; Signal Transduction
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-09-17
    Description: The prediction of protein structure from amino acid sequence is a grand challenge of computational molecular biology. By using a combination of improved low- and high-resolution conformational sampling methods, improved atomically detailed potential functions that capture the jigsaw puzzle-like packing of protein cores, and high-performance computing, high-resolution structure prediction (〈1.5 angstroms) can be achieved for small protein domains (〈85 residues). The primary bottleneck to consistent high-resolution prediction appears to be conformational sampling.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bradley, Philip -- Misura, Kira M S -- Baker, David -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1868-71.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉University of Washington, Department of Biochemistry, and Howard Hughes Medical Institute, Box 357350, Seattle, WA 98195, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166519" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Chemistry, Physical ; *Computational Biology ; Computer Simulation ; Hydrogen Bonding ; Models, Molecular ; Monte Carlo Method ; Physicochemical Phenomena ; *Protein Conformation ; Protein Folding ; Protein Structure, Secondary ; Protein Structure, Tertiary ; Proteins/*chemistry ; Sequence Alignment ; Thermodynamics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-05-10
    Description: Thermostabilizing an enzyme while maintaining its activity for industrial or biomedical applications can be difficult with traditional selection methods. We describe a rapid computational approach that identified three mutations within a model enzyme that produced a 10 degrees C increase in apparent melting temperature T(m) and a 30-fold increase in half-life at 50 degrees C, with no reduction in catalytic efficiency. The effects of the mutations were synergistic, giving an increase in excess of the sum of their individual effects. The redesigned enzyme induced an increased, temperature-dependent bacterial growth rate under conditions that required its activity, thereby coupling molecular and metabolic engineering.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3412875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Korkegian, Aaron -- Black, Margaret E -- Baker, David -- Stoddard, Barry L -- CA85939/CA/NCI NIH HHS/ -- CA97328/CA/NCI NIH HHS/ -- GM49857/GM/NIGMS NIH HHS/ -- GM59224/GM/NIGMS NIH HHS/ -- R01 CA097328/CA/NCI NIH HHS/ -- R01 GM049857/GM/NIGMS NIH HHS/ -- T32-GM08268/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2005 May 6;308(5723):857-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Division of Basic Sciences, Fred Hutchinson Cancer Research Center (FHCRC), 1100 Fairview Avenue North, Seattle, WA 98109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/15879217" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Binding Sites ; Catalysis ; Circular Dichroism ; *Computer Simulation ; Crystallography, X-Ray ; Cytosine Deaminase/*chemistry/*metabolism ; Enzyme Stability ; Escherichia coli/genetics/metabolism ; Kinetics ; Models, Molecular ; Molecular Sequence Data ; Monte Carlo Method ; Mutagenesis, Site-Directed ; Point Mutation ; Protein Conformation ; Protein Denaturation ; *Protein Engineering ; Protein Folding ; Protein Structure, Secondary ; Software ; Temperature ; Thermodynamics ; Transformation, Genetic ; Yeasts/enzymology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-07-01
    Description: The clock gene period-4 (prd-4) in Neurospora was identified by a single allele displaying shortened circadian period and altered temperature compensation. Positional cloning followed by functional tests show that PRD-4 is an ortholog of mammalian checkpoint kinase 2 (Chk2). Expression of prd-4 is regulated by the circadian clock and, reciprocally, PRD-4 physically interacts with the clock component FRQ, promoting its phosphorylation. DNA-damaging agents can reset the clock in a manner that depends on time of day, and this resetting is dependent on PRD-4. Thus, prd-4, the Neurospora Chk2, identifies a molecular link that feeds back conditionally from circadian output to input and the cell cycle.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pregueiro, Antonio M -- Liu, Qiuyun -- Baker, Christopher L -- Dunlap, Jay C -- Loros, Jennifer J -- MH44651/MH/NIMH NIH HHS/ -- P01 GM068087/GM/NIGMS NIH HHS/ -- R01 GM034985/GM/NIGMS NIH HHS/ -- R37GM34985/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2006 Aug 4;313(5787):644-9. Epub 2006 Jun 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Genetics, Dartmouth Medical School, Hanover, NH 03755, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16809488" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Cell Cycle ; Checkpoint Kinase 2 ; *Circadian Rhythm ; Cloning, Molecular ; DNA Damage ; Feedback, Physiological ; Fungal Proteins/chemistry/genetics/metabolism ; Gene Expression Regulation, Fungal ; Genes, Fungal ; Methyl Methanesulfonate/pharmacology ; Molecular Sequence Data ; Mutation ; Neurospora/*enzymology/genetics ; Neurospora crassa/cytology/*enzymology/*physiology ; Phosphorylation ; Protein-Serine-Threonine Kinases/chemistry/*genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-12-15
    Description: Ubiquitin is a highly conserved polypeptide found in all eukaryotes. The major function of ubiquitin is to target proteins for complete or partial degradation by a multisubunit protein complex called the proteasome. Here, the Drosophila fat facets gene, which is required for the appropriate determination of particular cells in the fly eye, was shown to encode a ubiquitin-specific protease (Ubp), an enzyme that cleaves ubiquitin from ubiquitin-protein conjugates. The Fat facets protein (FAF) acts as a regulatory Ubp that prevents degradation of its substrate by the proteasome. Flies bearing fat facets gene mutations were used to show that a Ubp is cell type--and substrate-specific and a regulator of cell fate decisions in a multicellular organism.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huang, Y -- Baker, R T -- Fischer-Vize, J A -- New York, N.Y. -- Science. 1995 Dec 15;270(5243):1828-31.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Zoology, University of Texas, Austin 78712, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8525378" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; *Cell Differentiation/genetics ; Cysteine/metabolism ; Drosophila/embryology/enzymology/genetics ; Endopeptidases/genetics/*metabolism ; Escherichia coli ; Eye/embryology ; Molecular Sequence Data ; Mutagenesis, Site-Directed ; Oligodeoxyribonucleotides ; Recombinant Fusion Proteins/genetics/metabolism ; Ubiquitins/*metabolism ; beta-Galactosidase/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...