ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (15)
  • Other Sources
  • Cyanobacteria
  • Springer  (15)
  • 2005-2009
  • 1995-1999  (4)
  • 1980-1984  (11)
  • Biology  (15)
Collection
  • Articles  (15)
  • Other Sources
Publisher
  • Springer  (15)
Years
Year
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 133 (1982), S. 11-19 
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Ultrastructure ; Mastigocladus laminosus ; Fischerella ; True branching
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The morphology and ultrastructure of the thermophilic cyanobacteriumMastigocladus laminosus were examined by scanning and transmission electron microscopy. Mature cultures consisted of relatively old, wide filaments that branched frequently to form younger, thinner filaments. The cells of the younger filaments had a consistently cylindrical morphology, while those of older filaments were rounded and pleomorphic. The internal ultrastructure of the cells depended somewhat on their age. As young cells became larger and wider, their thylakoids underwent slight rearrangement and spread out toward the center of the cytoplasm. Polyphosphate bodies, carboxysomes (polyhedral bodies), and lipid-body-like structures increased in number as the cells aged, but ribosomes and cyanophycin granules were depleted. Cell division involved septum formation followed by ingrowth of the outer membrane and sheath. Cells in older filaments were separated from each other by a complete layer of sheath material. Septum formation in older cells was also seen to occur parallel to the long axis of the filament, thereby confirming that true branching took place.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 130 (1981), S. 204-212 
    ISSN: 1432-072X
    Keywords: Agmenellum quadruplicatum ; Nitrogen starvation ; Ultrastructure ; PATO poststain ; Cyanobacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of nitrogen limitation on the ultrastructure of the unicellular cyanobacterium, Agmenellum quadruplicatum, were studied by thin sectioning transmission electron microscopy. Nitrogen became limiting for growth 14–15 h after transfer to nitrogen-limiting medium, but cultures retained full viability for at least 45 h. The c-phycocyanin: chlorophyll a ratio and cellular nitrogen content of the culture dropped rapidly after 14–15 h, as a progressive deterioration of major cell structures took place. Phycobilisomes were degraded first, followed by ribosomes and, then, thylakoid membranes. These structures were virtually depleted from the cells within 26 h. Intracellular polysaccharide accumulated in place of the normal cell structures throughout this period. Nitrogen limitation did not affect polyphosphate bodies, carboxysomes, lipid granules, the cell envelope, or the extra-cellular glycocalyx. All of the ultrastructural changes resulting from nitrogen limitation were reversed upon addition of nitrate to a starved culture. Most cell structures were restored within 3 h, and restoration was complete within 9 h.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0789
    Keywords: Key words Sustainable cropping ; Organic manures ; N2-fixing bacteria ; Azotobacter spp. ; Cyanobacteria ; Acetylene reduction assay ; ARA ; N fertilizer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Sustainable cropping systems rely on a minimum of external inputs. In these systems N is largely acquired in animal manures and leguminous green manures. Little is known of how these organic forms of N fertilizer influence the presence and activity of free-living N2-fixing bacteria. High concentrations of inorganic N in soil inhibit N2-fixation in cyanobacteria and Azotobacter spp. It is likely that manure and fertilizer applications would result in concentrations of inorganic N capable of inhibiting N2 fixation and, ultimately, the presence of these organisms. We investigated the effect of synthetic and organic N fertilizer sources on the populations and N2-fixation potential of free-living N2-fixing bacteria in the Farming Systems Trial at the Rodale Research Institute. Field plots received the following N treatments prior to corn (Zea mays L.) production: (1) Legume rotations and green manures supplying about 165 kg N ha–1; (2) beef cattle manure applied at a rate of 220 kg N ha–1 (plus 60 kg N ha–1 from 1994 hay plow-down); or (3) fertilizer N (urea and NH4NO3) applied at a rate of 145 kg N ha–1. Soil samples were collected at two depths from corn plots four times during the growing season, and analyzed for soil moisture, soil pH, numbers of N2-fixing cyanobacteria and Azotobacter spp., extractable NH4 + and NO3 –, and potentially mineralizable N. Soil samples collected in mid-July were analyzed for nitrogenase activity (by C2H2 reduction) and total C and N. Populations of Azotobacter spp. and cyanobacteria were influenced only slightly by treatment; however, cyanobacteria species composition was notably influenced by treatment. Nitrogenase activity in surface soils was greatest in legume-N plots and in subsurface plots levels were greatest in fertilizer-N plots. Populations and activity of free-living N-fixing bacteria appeared to be somewhat reduced in all plots as a result of low soil pH levels and high concentrations of inorganic N across all treatments. Annual applications of N to all plots resulted in high levels of potentially mineralizable N that in turn may have reduced non-symbiotic N2-fixation in all plots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0789
    Keywords: Sustainable cropping ; Organic manures ; N2-fixing bacteria ; Azotobacter spp. ; Cyanobacteria ; Acetylene reduction assay ; ARA ; N fertilizer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Sustainable cropping systems rely on a minimum of external inputs. In these systems N is largely acquired in animal manures and leguminous green manures. Little is known of how these organic forms of N fertilizer influence the presence and activity of free-living N2-fixing bacteria. High concentrations of inorganic N in soil inhibit N2-fixation in cyanobacteria and Azotobacter spp. It is likely that manure and fertilizer applications would result in concentrations of inorganic N capable of inhibiting N2 fixation and, ultimately, the presence of these organisms. We investigated the effect of synthetic and organic N fertilizer sources on the populations and N2-fixation potential of free-living N2-fixing bacteria in the Farming Systems Trial at the Rodale Research Institute. Field plots received the following N treatments prior to corn (Zea mays L.) production: (1) Legume rotations and green manures supplying about 165 kg N ha-1; (2) beef cattle manure applied at a rate of 220 kg N ha-1 (plus 60 kg N ha-1 from 1994 hay plow-down); or (3) fertilizer N (urea and NH4NO3) applied at a rate of 145 kg N ha-1. Soil samples were collected at two depths from corn plots four times during the growing season, and analyzed for soil moisture, soil pH, numbers of N2-fixing cyanobacteria and Azotobacter spp., extractable NH inf4 sup+ and NO inf3 sup- , and potentially mineralizable N. Soil samples collected in mid-July were analyzed for nitrogenase activity (by C2H2 reduction) and total C and N. Populations of Azotobacter spp. and cyanobacteria were influenced only slightly by treatment; however, cyanobacteria species composition was notably influenced by treatment. Nitrogenase activity in surface soils was greatest in legume-N plots and in subsurface plots levels were greatest in fertilizer-N plots. Populations and activity of free-living N-fixing bacteria appeared to be somewhat reduced in all plots as a result of low soil pH levels and high concentrations of inorganic N across all treatments. Annual applications of N to all plots resulted in high levels of potentially mineralizable N that in turn may have reduced non-symbiotic N2-fixation in all plots.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Planta 151 (1981), S. 256-264 
    ISSN: 1432-2048
    Keywords: Cyanobacteria ; (dark) CO2 fixation ; Lichens ; Nitrogenase ; Pettigera
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The lichen Peltigera aphthosa consists of a fungus and green alga (Coccomyxa) in the main thallus and of a Nostoc located in superficial packets, intermixed with fungus, called cephalodia. Dark nitrogenase activity (acetylene reduction) of lichen discs (of alga, fungus and Nostoc) and of excised cephalodia was sustained at higher rates and for longer than was the dark nitrogenase activity of the isolated Nostoc growing exponentially. Dark nitrogenase activity of the symbiotic Nostoc was supported by the catabolism of polyglucose accumulated in the ligh and which in darkness served to supply ATP and reductant. The decrease in glucose content of the cephalodia paralleled the decline in dark nitrogenase activity in the presence of CO2; in the absence of CO2 dark nitrogenase activity declined faster although the rate of glucose loss was similar in the presence and absence of CO2. Dark CO2 fixation, which after 30 min in darkness represented 17 and 20% of the light rates of discs and cephalodia, respectively, also facilitated dark nitrogenase activity. The isolated Nostoc, the Coccomyxa and the excised fungus all fixed CO2 in the dark; in the lichen most dark CO2 fixation was probably due to the fungus. Kinetic studies using discs or cephalodia showed highest initial incorporation of 14CO2 in the dark in to oxaloacetate, aspartate, malate and fumarate; incorporation in to alanine and citrulline was low; incorporation in to sugar phosphates, phosphoglyceric acid and sugar alcohols was not significant. Substantial activities of the enzymes phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) and carbamoyl-phosphate synthase (EC 2.7.2.5 and 2.7.2.9) were detected but the activities of PEP carboxykinase (EC 4.1.1.49) and PEP carboxyphosphotransferase (EC 4.1.1.38) were negligible. In the dark nitrogenase activity by the cephalodia, but not by the free-living Nostoc, declined more rapidly in the absence than in the presence of CO2 in the gas phase. Exogenous NH 4 + inhibited nitrogenase activity by cephalodia in the dark especially in the absence of CO2 but had no effect in the light. The overall data suggest that in the lichen dark CO2 fixation by the fungus may provide carbon skeletons which accept NH 4 + released by the cyanobacterium and that in the absence of CO2, NH 4 + directly, or indirectly via a mechanism which involves glutamine synthetase, inhibits nitrogenase activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Heterocysts ; Utrastructure ; Cytology ; Akinetes ; Mastigocladus laminosus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The morphological and ultrastructural characteristics of the cyanobacterium Mastigocladus laminosus growing under N2-fixing conditions were examined with light and electron microscopy. Vegetative cells in narrow filaments contained randomly arranged segments of thylakoid membrane, centrally located carboxysomes (polyhedral bodies), peripherally located lipid bodies, and large numbers of polysaccharide granules in addition to nuclear material and ribosomes. The ultrastructural characteristics of cells in wide filaments were similar, except for increased numbers of carboxysomes and lipid bodies. Heterocytes and proheterocysts developed at a variety of locations in narrow filaments, wide filaments, and the lateral branches off of wide filaments. Akinetes were not observed in any of the filaments. The morphological characteristics of heterocysts and proheterocysts were variable and depended on those of the vegative cells from which the heterocysts and proheterocysts developed. Mature M. laminosus heterocysts were somewhat similar to those formed in other cyanobacterial genera, but they possessed a number of distinct and unique ultrastructural characteristics, including (i) the absence of a fibrous and, possibly, a laminated wall layer, (ii) the presence many closely packed membranes throughout most of the cytoplasm, and (iii) the presence of unidentified, spherical inclusion bodies of variable electron density.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 137 (1984), S. 241-246 
    ISSN: 1432-072X
    Keywords: Ammonium transport ; Anabaena azollae ; Anabaena variabilis ; Cyanobacteria ; Methylammonium transport ; Symbiosis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The free-living cyanobacterium Anabaena variabilis showed a biphasic pattern of 14CH3NH 3 + uptake. Initial accumulation (up to 60 s) was independent of CH3NH 3 + metabolism, but long-term uptake was dependent on its metabolism via glutamine synthetase (GS). The CH3NH 3 + was converted into methylglutamine which was not further metabolised. The addition of l-methionine-dl-sulphoximine (MSX), to inhibit GS, inhibited CH3NH 3 + metabolism, but did not affect the CH3NH 3 + transport system. NH 4 + , when added after the addition of 14CH3NH 3 + , caused the efflux of free CH3NH 3 + ; when added before 14CH3NH 3 + , NH 4 + inhibited its uptake indicating that both NH 4 + and CH3NH 3 + share a common transport system. Carbonylcyanide m-chlorophenylhydrazone and triphenyl-methylphosphonium both inhibited CH3NH 3 + accumulation indicating that the transport system was Δψ-dependent. At pH 7 and at an external CH3NH 3 + concentration of 30 μmol dm-3, A. variabilis showed a 40-fold intracellular accumulation of CH3NH 3 + (internal concentration 1.4 mmol dm-3). Packets of the symbiotic cyanobacterium Anabaena azollae, directly isolated from the water fern Azolla caroliniana, also showed a Δψ-dependent NH 4 + transport system suggesting that the reduced inhibitory effect of NH 4 + on nitrogenase cannot be attributed to the absence of an NH 4 + transport system but is probably related to the reduced GS activity of the cyanobiont.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 128 (1980), S. 8-11 
    ISSN: 1432-072X
    Keywords: Agmenellum quadruplicatum ; Glycocalyx ; Cyanobacteria
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The marine cyanobacterium Agmenellum quadruplicatum was shown to possess an extracellular glycocalyx similar in structure to those surrounding other bacteria from a variety of natural environments. Thin sections of cells stained with ruthenium red and frozen-etched preparations of unfixed cells indicated the glycocalyx was a network of small fibrils. The glycocalyx was present during all phases of growth, and was not degraded during nutrient limitation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-072X
    Keywords: Proton transport ; 9-aminoacridine fluorescence changes ; Cyanobacteria ; Thylakoids ; Cytoplasmic membrane ; Plectonema boryanum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Light-induced fluorescence changes of 9-aminoacridine, an indicator of proton gradient in energy-transducing membranes, were studied in Plectonema boryanum and other cyanobacteria. The fluorescence changes observed in cell suspensions resulted from a superposition of fluorescence quenching and enhancement as the analysis of the kinetic data shows. Both components of the fluorescence changes are abolished by 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and m-chlorocarbonylcyanide phenylhydrazone. The inhibitory effect of DCMU is removed by 2,3,5,6- or N,N,N′,N′-tetramethyl-p-phenylenediamine. The fluorescence quenching sensitive to substrates and uncouplers of the photophosphorylation is only observed in membrane vesicles obtained by osmotic shock of P. boryanum spheroplasts. Presumably, light-induced quenching of the dye fluorescence in the cells of cyanobacteria is due to the proton transport from the cytoplasm in the inner space of thylakoids while fluorescence enhancement is due to the proton efflux from the cytoplasm into the incubation medium.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Archives of microbiology 138 (1984), S. 333-337 
    ISSN: 1432-072X
    Keywords: Cyanobacteria ; Osmotic adjustment ; Osmoregulation ; Quaternary ammonium compounds ; Glycine betaine ; Halotolerance
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The intracellular concentrations of the monovalent inorganic cations K+ and Na+, low molecular weight carbohydrates and quaternary ammonium compounds have been determined for 4 strains of cyanobacteria (Aphanothece halophytica, Coccochloris elabens, Dactylococcopsis salina and Synechocystis DUN52) originally isolated from hypersaline habitats (i.e. habitats with a salinity greater than that of seawater) over a range of external salt concentration (from 50% to 400% seawater). Intracellular cation levels (Na+ and K+) were determined to be within the range 80–320 mmol · dm-3 (cell volume), showing only minor changes in response to salinity. Intracellular carbohydrates were found to comprise a negligible component of the intracellular osmotic potential [at 2–19 mmol · dm-3 (cell volume)], throughout the salinity range. Quaternary ammonium compounds, however, were recorded in osmotically significant quantities [up to 1,640 mmol · dm-3 (cell volume)] in these strains, showing major variation in response to salinity. Thus Synechocystis DUN 52 showed an increase in quaternary ammonium compounds in the oder of 1,200 mmol · dm-3 between 50% and 400% seawater medium, accounting for a significant proportion of the change in external osmotic potential. Examination of intact cells and cell extracts using 13C and 1H nuclear magnetic resonance (NMR) spectroscopy confirmed the presence of the quaternary ammonium compound glycine betaine as the major osmoticum in the 4 strains; no other compounds were detected during NMR assays. These results suggest a common mechanism of osmotic adjustment, involving quaternary ammonium compounds, in cyanobacteria from hypersaline environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...