Skip to main content
Log in

The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The effects of nitrogen limitation on the ultrastructure of the unicellular cyanobacterium, Agmenellum quadruplicatum, were studied by thin sectioning transmission electron microscopy. Nitrogen became limiting for growth 14–15 h after transfer to nitrogen-limiting medium, but cultures retained full viability for at least 45 h. The c-phycocyanin: chlorophyll a ratio and cellular nitrogen content of the culture dropped rapidly after 14–15 h, as a progressive deterioration of major cell structures took place. Phycobilisomes were degraded first, followed by ribosomes and, then, thylakoid membranes. These structures were virtually depleted from the cells within 26 h. Intracellular polysaccharide accumulated in place of the normal cell structures throughout this period. Nitrogen limitation did not affect polyphosphate bodies, carboxysomes, lipid granules, the cell envelope, or the extra-cellular glycocalyx. All of the ultrastructural changes resulting from nitrogen limitation were reversed upon addition of nitrate to a starved culture. Most cell structures were restored within 3 h, and restoration was complete within 9 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen MM (1972) Mesosomes in blue-green algae. Arch Mikrobiol 84:199–206

    Google Scholar 

  • Allen MM, Smith AJ (1969) Nitrogen chlorosis in blue-green algae. Arch Mikrobiol 69:114–120

    Google Scholar 

  • Allen MM, Weathers PJ (1980) Structure and composition of cyanophycin granules in the cyanobacterium Aphanocapsa 6308. J Bacteriol 141:959–962

    Google Scholar 

  • Avakyan AA, Kats LN Mineeva LA, Ratner EN, Gusev MV (1979) Electron microscopic data on mesosome-like and myelin-like structures in blue-green algae. Mikrobiologiya (Engl. Transl.) 47:595–600

    Google Scholar 

  • Balkwill DL, Stevens SE, Jr (1980a) Effects of penicillin G on mesosomelike structures in Agmenellum quadruplicatum. Antimicrob Agents Chemother 17:506–509

    Google Scholar 

  • Balkwill DL, Stevens SE, Jr (1980b) Glycocalyx of Agmenellum quadruplicatum. Arch Microbiol 128:8–11

    Google Scholar 

  • Boresch K (1910) Zur Physiologie der Blaualgenfarbstoffe. Lotos (Prag) 58:344–345

    Google Scholar 

  • Boresch K (1913) Die Färbung von Cyanophyceen und Chlorophyceen in ihrer Abhängigkeit vom Stickstoffgehalt des Substrates. Jb wiss Bot 52:145–185

    Google Scholar 

  • Boussiba S, Richmond AE (1980) C-phycocyanin as a storage protein in the blue-green alga Spirulina platensis. Arch Microbiol 125:143–147

    Google Scholar 

  • Cagle GD, Pfister RM, Vela GR (1972) Improved staining of extracellular polymer for electron microscopy: examination of Azotobacter, Zoogloea, Leuconostoc, and Bacillus. Appl Microbiol 24:477–487

    Google Scholar 

  • Daley RJ, Brown SR (1973) Chlorophyll, nitrogen, and photosynthetic patterns during growth and senescence of two blue-green algae. J Phycol 9:395–401

    Google Scholar 

  • de Vasconcelos L, Fay P (1974) Nitrogen metabolism and ultrastructure in Anabaena cylindria. I. The effect of nitrogen starvation. Arch Microbiol 96:271–279

    Google Scholar 

  • Edwards MR, Berns DS, Ghiorse WC, Holt SC (1968) Ultrastructure of the thermophilic blue-green alga, Synechococcus lividus Copeland. J Phycol 4:283–298

    Google Scholar 

  • Edwards MR, Gantt E (1971) Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. J Cell Biol 50:898–900

    Google Scholar 

  • Fritsch FE (1945) Structure and reproduction of the algae, Vol II. Cambridge, University Press, p 782

    Google Scholar 

  • Gantt E, Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97:1486–1493

    Google Scholar 

  • Giesy RM (1964) A light and electron microscope study of interlamellar polyglucoside bodies in Oscillatoria chalybia. Amer J Bot 51:388–396

    Google Scholar 

  • Hanker JS, Seaman AR, Weiss LP, Ueno H, Bergman RA, Seligman AM (1964) Osmophilic reagents: new cytochemical principle for light and electron microscopy. Science 146:1039–1043

    Google Scholar 

  • Ingram LO, Thurston EL (1970) Cell division in morphological mutants of Agmenellum quadruplicatum, strain BG-1. Protoplasma 71:55–75

    Google Scholar 

  • Jensen TE (1968) Electron microscopy of polyphosphate bodies in a blue-green alga, Nostoc pruniforme. Arch Mikrobiol 62:144–152

    Google Scholar 

  • Jensen TE (1969) Fine structure of developing polyphosphate bodies in a blue-green alga, Plectonema boryanum. Arch Mikrobiol 67:328–338

    Google Scholar 

  • Jensen TE Sicko-Goad L, Ayala RP (1977) Phosphate metabolism in blue-green algae. III. The effect of fixation and poststaining on the morphology of polyphosphate bodies in Plectonema boryanum. Cytologia 42:357–369

    Google Scholar 

  • Kapp R, Stevens SE, JR Fox JL (1975) A survey of available nitrogen sources for the growth of the blue-green alga Agmenellum quadruplicatum. Arch Microbiol 104:135–138

    Google Scholar 

  • Katoh T, Ohki K (1975) Loss of photosystem II induced by a nitrate deficiency in photoorganotrophically grown Anabaena variabilis. Plant Cell Physiol 16:815–828

    Google Scholar 

  • Kellenberger E, Ryter A, Sechaud J (1958) Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA as compared with normal bacterial nucleoids in different physiological states. J Biophys Biochem Cytol 4:671–687

    Google Scholar 

  • Khan ZNT, Godward MBE (1978) Cyanophycin granules in a blue-green alga Calothrix marchica Lemm. Cur Sci 47:710–712

    Google Scholar 

  • Kipe-Nolt JA, Stevens SE Jr (1979) Effect of levulinic acid on pigment biosynthesis in Agmenellum quadruplicatum. J Bacteriol 137:146–152

    Google Scholar 

  • Lang NJ, Fischer KA (1969) Variation in the fixation image of “structured granules” in Ababaena. Arch Mikrobiol 67:173–181

    Google Scholar 

  • Lang NJ, Simon RD, Wolk CP (1972) Correspondence of cyanophycin granules with structured granules in Anabaena cylindrica. Arch Mikrobiol 83:313–320

    Google Scholar 

  • Lau RH, MacKenzie MM, Doolittle WF (1977) Phycocyanin synthesis and degradation in the blue-green bacterium Anacystis nidulans. J Bacteriol 132:771–778

    Google Scholar 

  • Lehmann M, Wöber G (1976) Accumulation, mobilization and turn-over of glycogen in the blue-green bacterium Anacystis nidulans. Arch Microbiol 111:93–97

    Google Scholar 

  • Magnus W, Schindler B (1912) Über den Einfluß der Nährsalze auf die Färbung der Oscillarien. Ber dtsch bot Ges 30:314–320

    Google Scholar 

  • Miller LS, Holt SC (1977) Effects of carbon dioxide on pigment and membrane content in Synechococcus lividus. Arch Microbiol 115:185–198

    Google Scholar 

  • Ownby JD, Shannahan M, Hood EH (1979) Protein synthesis and degradation in Anabaena during nitrogen starvation. J Gen Microbiol 110:255–261

    Google Scholar 

  • Paone DAM, Stevens SE Jr (1981) Nitrogen starvation and the regulation of glutamine synthetase in Agmenellum quadruplicatum. Plant Physiol 67:1097–1100

    Google Scholar 

  • Peat A, Whitton BA (1967) Environmental effects on the structure of the blue-green alga, Chloroglea fritschii. Arch Mikrobiol 57:155–180

    Google Scholar 

  • Provasoli L, McLaughlin JJA, Droop MR (1951) The development of artificial media for marine algae. Arch Mikrobiol 25:392–482

    Google Scholar 

  • Reynolds ES (1963) The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J Cell Biol 17:208–212

    Google Scholar 

  • Rippka R, Waterbury J, Cohen-Bazire G (1974) A cyanobacterium which lacks thylakoids. Arch Microbiol 100:419–436

    Google Scholar 

  • Schindler B (1913) Über den Farbenwechsel der Oscillarien. Z Bot 5:497–575

    Google Scholar 

  • Sigalat C, de Kouchokovsky Y (1974) Preparation and properties of photosynthetic fragments of the unicellular blue-green alga Anacystis nidulans. In: M. Avron (ed.) Proc. III Internatl Cong Photosyn pp 621–627. Amsterdam: Elsevier

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Google Scholar 

  • Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: The cyanobacteria. Ann Rev Microbiol 31:225–274

    Google Scholar 

  • Stevens SE, Paone DAM, Balkwill DL (1981) Accumulation of cyanophycin granules as a result of phosphate limitation in Agmenellum quadruplicatum. Plant Physiol 67:716–719

    Google Scholar 

  • Stevens SE Jr, Patterson COP, Myers J (1973) The production of hydrogen peroxide by blue-green algae: A survey. J Phycol 9:427–430

    Google Scholar 

  • Stevens SE Jr, Porter RD (1980) Transformation in Agmenellum quadruplicatum. Proc Natl Acad Sci USA 77:6052–6056

    Google Scholar 

  • Stevens SE Jr, Van Baalen C (1970) Growth characteristics of selected mutants of a coccoid blue-green alga. Arch Mikrobiol 72:1–8

    Google Scholar 

  • Stevens SE Jr, Van Baalen C (1973) Characteristics of nitrate reductase in a mutant of the blue-green alga Agmenellum quadruplicatum. Plant Physiol 51:350–356

    Google Scholar 

  • Stevens SE Jr, Van Baalen C (1974) Control of nitrate reductase in a blue-green alga: The effects of inhibitors, blue light and ammonia. Arch Biochem Biophys 161:146–152

    Google Scholar 

  • Szalontai B, Csatorday K (1979) Changes in phycocyanin-carotenoid association during nitrate starvation of Anacystic nidulans. Biochem Biophys Res Comm 88:1294–1300

    Google Scholar 

  • Van Baalen C (1962) Studies on marine blue-green algae. Bot Mar 4:129–139

    Google Scholar 

  • Van Baalen C, Marler JE (1963) Characteristics of marine blue-green algae with uric acid as nitrogen source. J Gen Microbiol 32:457–463

    Google Scholar 

  • Wallace RJ (1980) Cytoplasmic reserve polysaccharide of Selenomonas ruminantium. Appl Environ Microbiol 39:630–634

    Google Scholar 

  • Wolk CP (1973) Physiology and cytological chemistry of blue-green algae. Bacteriol Rev 37:32–101

    Google Scholar 

  • Wood NB, Haselkorn R (1980) Control of phycobiliprotein proteolysis and heterocyst differentiation in Anabaena. J Bacteriol 141:1375–1385

    Google Scholar 

  • Yamanaka G, Glazer AN (1980) Dynamic aspects of phycobilisome structure. Phycobilisome turnover during nitrogen starvation in Synechococcus sp. Arch Microbiol 124:39–47

    Google Scholar 

  • Zevenboom W, de Groot GJ, Mur LR (1980) Effects of light on nitratelimited Oscillatoria agardhii in chemostat cultures. Arch Microbiol 125:59–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stevens, S.E., Balkwill, D.L. & Paone, D.A.M. The effects of nitrogen limitation on the ultrastructure of the cyanobacterium Agmenellum quadruplicatum . Arch. Microbiol. 130, 204–212 (1981). https://doi.org/10.1007/BF00459520

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00459520

Key words

Navigation