ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (21)
  • 2010-2014  (21)
Collection
  • Articles  (21)
Years
Year
Journal
  • 1
    Publication Date: 2012-07-25
    Description: The Greenland GPS Network (GNET) uses the Global Positioning System (GPS) to measure the displacement of bedrock exposed near the margins of the Greenland ice sheet. The entire network is uplifting in response to past and present-day changes in ice mass. Crustal displacement is largely accounted for by an annual oscillation superimposed on a sustained trend. The oscillation is driven by earth’s elastic response to seasonal variations in ice mass and air mass (i.e., atmospheric pressure). Observed vertical velocities are higher and often much higher than predicted rates of postglacial rebound (PGR), implying that uplift is usually dominated by the solid earth’s instantaneous elastic response to contemporary losses in ice mass rather than PGR. Superimposed on longer-term trends, an anomalous ‘pulse’ of uplift accumulated at many GNET stations during an approximate six-month period in 2010. This anomalous uplift is spatially correlated with the 2010 melting day anomaly.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-11-15
    Description: In order to increase the understanding of the changing climate, the European Space Agency has launched the Climate Change Initiative (ESA CCI), a program which joins scientists and space agencies into 13 projects either affecting or affected by the concurrent changes. This work is part of the Ice Sheets CCI and four parameters are to be determined for the Greenland Ice Sheet (GrIS), each resulting in a dataset made available to the public: Surface Elevation Changes (SEC), surface velocities, grounding line locations, and calving front locations. All CCI projects have completed a so-called Round Robin exercise in which the scientific community was asked to provide their best estimate of the sought parameters as well as a feedback sheet describing their work. By inter-comparing and validating the results, obtained from research institutions world-wide, it is possible to develop the most optimal method for determining each parameter. This work describes the SEC Round Robin and the subsequent conclusions leading to the creation of a method for determining GrIS SEC values. The participants used either Envisat radar or ICESat laser altimetry over Jakobshavn Isbræ drainage basin, and the submissions led to inter-comparisons of radar vs. altimetry as well as cross-over vs. repeat-track analyses. Due to the high accuracy of the former and the high spatial resolution of the latter, a method, which combines the two techniques will provide the most accurate SEC estimates. The data supporting the final GrIS analysis stem from the radar altimeters on-board Envisat, ERS-1 and ERS-2. The accuracy of laser data exceeds that of radar altimetry; the Round Robin analysis has, however, proven the latter equally capable of dealing with surface topography thereby making such data applicable in SEC analyses extending all the way from the interior ice sheet to margin regions. This shows good potential for a~future inclusion of ESA CryoSat-2 and Sentinel-3 radar data in the analysis, and thus for obtaining reliable SEC estimates throughout the entire GrIS.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-12-11
    Description: Recent studies have determined mass changes of Arctic ice caps and glaciers from satellite altimetry. Determining regional mass balance of ice caps and glaciers using this technique is inherently difficult due to their size and geometry. Furthermore these studies have mostly relied on one method or the same types of methods to determine the regional mass balance, by extrapolating elevation changes using their relation to elevation. This makes the estimation of mass balance heavily dependent on the method used to regionalize the elevation changes. Left without consideration large discrepancies can arise in the mass change estimates and the interpretation of them. In this study we use Ice, Cloud, and land Elevation Satellite (ICESat) derived elevation changes from 2003–2009 and determine the impact of different regionalizing schemes on the mass change estimates of the Arctic ice caps and glaciers. Four different methods, based on interpolation and extrapolation of the elevation changes were used to quantify this effect on the regional mass changes. Secondly, a statistical criteria was developed to determine the optimum method for each region in order to derive robust mass changes and reduce the need of external validation data. In this study we found that the range or spread of the estimated mass changes, for the different regions, was highly correlated to the inter-annual variability of the elevation changes, driven by the different climatic conditions of the regions. Regions affected by a maritime climate show a large range in estimated values, on average 1.5–2 times larger than the predicted errors. For regions in a continental regime the opposite was observed, and the range of the values lies well inside the error estimates. We also found that the extrapolation methods tend on average to produce more negative values than the interpolation methods and that our four methods do not fully reproduce the original histogram. Instead, they produce more negative distributions than the original which may indicate that previous and these current estimates using ICESat observations might be overestimate by as much as 4–19%, depending on region. This should therefore be taken into account when deriving regional mass balance from satellite altimetry in regions which show high inter-annual variability of elevation changes. In these regions several different independent methods should be used to capture the elevation change pattern and then analyzed to determine the most suitable method. For regions in a continental climate regime, and with low variability of elevation changes, a single method may be sufficient to capture the regional elevation change pattern and hence mass balance.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-10-11
    Description: We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved coverage of data has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6 % greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10 %. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-15
    Description: ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique data set for monitoring the changes of the cryosphere. Here we present a novel method for determining the mass balance of the Greenland ice sheet derived from ICESat altimetry data. Four different methods for deriving the elevation changes from the ICESat altimetry data set are used. This multi method approach gives an understanding of the complexity associated with deriving elevation changes from the ICESat altimetry data set. The altimetry can not stand alone in estimating the mass balance of the Greenland ice sheet. We find firn dynamics and surface densities to be important factors in deriving the mass loss from remote sensing altimetry. The volume change derived from ICESat data is corrected for firn compaction, vertical bedrock movement and an intercampaign elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by surface density modelling. The firn compaction and density models are driven by a dynamically downscaled simulation of the HIRHAM5 regional climate model using ERA-Interim reanalysis lateral boundary conditions. We find an annual mass loss of the Greenland ice sheet of 210 ± 21 Gt yr−1 in the period from October 2003 to March 2008. This result is in good agreement with other studies of the Greenland ice sheet mass balance, based on different remote sensing techniques.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-09-23
    Description: During the last decade, the GRACE mission has provided valuable data for determining the mass changes of the Greenland and Antarctic ice sheets. Yet, discrepancies still exist in the published mass balance results, and comprehensive analyses on the sources of errors and discrepancies are lacking. Here, we present monthly mass changes together with trends derived from GRACE data at basin scale for both the Greenland and Antarctic ice sheets, and we assess the variability and errors for each of the possible sources of discrepancies, and we do this in an unprecedented systematic way, taking into account mass inference methods, data sets and background models. We find a very good agreement between the monthly mass change results derived from two independent methods, which represents a cross validation. For the monthly solutions, we find that most of the scatter is caused by the use of the two different data sets rather than the two different methods applied. Besides the well-known GIA trend uncertainty, we find that the geocenter motion and the recent de-aliasing corrections significantly impact the trends, with contributions of +13.2 Gt yr−1 and −20 Gt yr−1, respectively, for Antarctica, which is more affected by these than Greenland. We show differences between the use of release RL04 and the new RL05 and confirm a lower noise content in the new release. The overall scatter of the solutions well exceeds the uncertainties propagated from the data errors and the leakage (as done in the past); hence we calculate new sound total errors for the monthly solutions and the trends. We find that the scatter in the monthly solutions caused by applying different estimates of geocenter motion time series (degree-1 corrections) is significant – contributing with up to 40% of the total error. For the whole GRACE period (2003–2011) our trend estimate for Greenland is −234 ± 20 Gt yr−1 and −83 ± 36 Gt yr−1 for Antarctica (−111 ± 15 Gt yr−1 in the western part). We also find a clear (with respect to our errors) increase of mass loss in the last four years.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2012-08-15
    Description: During the last decade, the GRACE mission has provided valuable data for determining the mass changes of the Greenland and Antarctic ice sheets. Yet, discrepancies still exist in the published mass balance results, and analyses on the sources of errors and discrepancies are lacking. Here, we present monthly mass changes together with trends derived from GRACE data at basin scale for both the Greenland and Antarctica ice sheets and we assess, for the first time systematically, the variability and errors for each of the possible sources of discrepancies: mass inference methods, data sets and background models. We find a very good agreement between the monthly mass change results derived from two independent methods, which represents a cross validation. For the monthly solutions, we find that most of the variability is caused by the use of different data sets rather than different methods. Besides the well-known GIA trend uncertainty, we find that the degree-1 variability and the recent de-aliasing corrections have significant impact on monthly time series and trends respectively. We also show the remarkable differences between the use of release RL04 and the new RL05, and how the latter results in smaller mass trends for the majority of the basins. The overall variability of the solutions well exceeds the uncertainties propagated from the data errors and the leakage (as done in the past), hence we calculate new sound total errors for the monthly solutions and the trends. For the whole GRACE period our trend estimate for Greenland is −234 ± 20 Gt yr−1 and −83 ± 36 Gt yr−1 for Antarctica (−111 ± 15 Gt yr−1 in the western part). These trends show a clear (with respect to our errors) increase of mass loss in the last four years.
    Print ISSN: 1994-0432
    Electronic ISSN: 1994-0440
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-02-28
    Description: We present Bedmap2, a new suite of gridded products describing surface elevation, ice-thickness and the seafloor and subglacial bed elevation of the Antarctic south of 60° S. We derived these products using data from a variety of sources, including many substantial surveys completed since the original Bedmap compilation (Bedmap1) in 2001. In particular, the Bedmap2 ice thickness grid is made from 25 million measurements, over two orders of magnitude more than were used in Bedmap1. In most parts of Antarctica the subglacial landscape is visible in much greater detail than was previously available and the improved data-coverage has in many areas revealed the full scale of mountain ranges, valleys, basins and troughs, only fragments of which were previously indicated in local surveys. The derived statistics for Bedmap2 show that the volume of ice contained in the Antarctic ice sheet (27 million km3) and its potential contribution to sea-level rise (58 m) are similar to those of Bedmap1, but the mean thickness of the ice sheet is 4.6% greater, the mean depth of the bed beneath the grounded ice sheet is 72 m lower and the area of ice sheet grounded on bed below sea level is increased by 10%. The Bedmap2 compilation highlights several areas beneath the ice sheet where the bed elevation is substantially lower than the deepest bed indicated by Bedmap1. These products, along with grids of data coverage and uncertainty, provide new opportunities for detailed modelling of the past and future evolution of the Antarctic ice sheets.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-03-09
    Description: ICESat has provided surface elevation measurements of the ice sheets since the launch in January 2003, resulting in a unique dataset for monitoring the changes of the cryosphere. Here, we present a novel method for determining the mass balance of the Greenland ice sheet, derived from ICESat altimetry data. Three different methods for deriving elevation changes from the ICESat altimetry dataset are used. This multi-method approach provides a method to assess the complexity of deriving elevation changes from this dataset. The altimetry alone can not provide an estimate of the mass balance of the Greenland ice sheet. Firn dynamics and surface densities are important factors that contribute to the mass change derived from remote-sensing altimetry. The volume change derived from ICESat data is corrected for changes in firn compaction over the observation period, vertical bedrock movement and an intercampaign elevation bias in the ICESat data. Subsequently, the corrected volume change is converted into mass change by the application of a simple surface density model, in which some of the ice dynamics are accounted for. The firn compaction and density models are driven by the HIRHAM5 regional climate model, forced by the ERA-Interim re-analysis product, at the lateral boundaries. We find annual mass loss estimates of the Greenland ice sheet in the range of 191 ± 23 Gt yr−1 to 240 ± 28 Gt yr−1 for the period October 2003 to March 2008. These results are in good agreement with several other studies of the Greenland ice sheet mass balance, based on different remote-sensing techniques.
    Print ISSN: 1994-0416
    Electronic ISSN: 1994-0424
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...