ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2010-09-04
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shaw, Andrey S -- Huang, Yina -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1154-5. doi: 10.1126/science.1195337.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Immunology and Howard Hughes Medical Institute, Washington University School of Medicine, St. Louis, MO 63110, USA. shaw@pathology.wustl.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20813941" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Cell Adhesion Molecules/chemistry/*metabolism ; Coxsackie and Adenovirus Receptor-Like Membrane Protein ; Crystallization ; Epidermis/*immunology/metabolism/ultrastructure ; Hydrogen Bonding ; Ligands ; Lymphocyte Activation ; Mice ; Phosphatidylinositol 3-Kinases/metabolism ; Protein Binding ; Protein Interaction Domains and Motifs ; Protein Multimerization ; Receptors, Antigen, T-Cell, gamma-delta/*immunology/metabolism ; Receptors, Virus/chemistry/*metabolism ; Signal Transduction ; T-Lymphocyte Subsets/*immunology/*metabolism ; Tight Junctions/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-21
    Description: Proteinases and the innate immune receptor Toll-like receptor 4 (TLR4) are essential for expression of allergic inflammation and diseases such as asthma. A mechanism that links these inflammatory mediators is essential for explaining the fundamental basis of allergic disease but has been elusive. Here, we demonstrate that TLR4 is activated by airway proteinase activity to initiate both allergic airway disease and antifungal immunity. These outcomes were induced by proteinase cleavage of the clotting protein fibrinogen, yielding fibrinogen cleavage products that acted as TLR4 ligands on airway epithelial cells and macrophages. Thus, allergic airway inflammation represents an antifungal defensive strategy that is driven by fibrinogen cleavage and TLR4 activation. These findings clarify the molecular basis of allergic disease and suggest new therapeutic strategies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3898200/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Millien, Valentine Ongeri -- Lu, Wen -- Shaw, Joanne -- Yuan, Xiaoyi -- Mak, Garbo -- Roberts, Luz -- Song, Li-Zhen -- Knight, J Morgan -- Creighton, Chad J -- Luong, Amber -- Kheradmand, Farrah -- Corry, David B -- AI057696/AI/NIAID NIH HHS/ -- AI070973/AI/NIAID NIH HHS/ -- CA125123/CA/NCI NIH HHS/ -- HL75243/HL/NHLBI NIH HHS/ -- K02 HL075243/HL/NHLBI NIH HHS/ -- R01 AI057696/AI/NIAID NIH HHS/ -- R01 HL095382/HL/NHLBI NIH HHS/ -- R01 HL117181/HL/NHLBI NIH HHS/ -- R25GM56929/GM/NIGMS NIH HHS/ -- T32 GM088129/GM/NIGMS NIH HHS/ -- T32GM088129/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 16;341(6147):792-6. doi: 10.1126/science.1240342.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Translational Biology and Molecular Medicine Program, Baylor College of Medicine, Houston, TX, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23950537" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Aspergillus niger/growth & development/*immunology ; Aspergillus oryzae/enzymology ; Bronchoalveolar Lavage Fluid/cytology ; Epithelial Cells/immunology/metabolism ; Fibrinogen/*metabolism ; Immunity, Innate ; Ligands ; Macrophage Activation ; Macrophages/immunology/metabolism/microbiology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Peptide Hydrolases/immunology/*metabolism ; Respiratory Hypersensitivity/*immunology/*metabolism ; Respiratory Mucosa/cytology/immunology/metabolism ; Th2 Cells/immunology ; Toll-Like Receptor 4/genetics/*metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-12-12
    Description: Protease-activated receptor 1 (PAR1) is the prototypical member of a family of G-protein-coupled receptors that mediate cellular responses to thrombin and related proteases. Thrombin irreversibly activates PAR1 by cleaving the amino-terminal exodomain of the receptor, which exposes a tethered peptide ligand that binds the heptahelical bundle of the receptor to affect G-protein activation. Here we report the 2.2 A resolution crystal structure of human PAR1 bound to vorapaxar, a PAR1 antagonist. The structure reveals an unusual mode of drug binding that explains how a small molecule binds virtually irreversibly to inhibit receptor activation by the tethered ligand of PAR1. In contrast to deep, solvent-exposed binding pockets observed in other peptide-activated G-protein-coupled receptors, the vorapaxar-binding pocket is superficial but has little surface exposed to the aqueous solvent. Protease-activated receptors are important targets for drug development. The structure reported here will aid the development of improved PAR1 antagonists and the discovery of antagonists to other members of this receptor family.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531875/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3531875/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zhang, Cheng -- Srinivasan, Yoga -- Arlow, Daniel H -- Fung, Juan Jose -- Palmer, Daniel -- Zheng, Yaowu -- Green, Hillary F -- Pandey, Anjali -- Dror, Ron O -- Shaw, David E -- Weis, William I -- Coughlin, Shaun R -- Kobilka, Brian K -- HL44907/HL/NHLBI NIH HHS/ -- HL65590/HL/NHLBI NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 HL044907/HL/NHLBI NIH HHS/ -- R01 HL065185/HL/NHLBI NIH HHS/ -- R01 HL065590/HL/NHLBI NIH HHS/ -- England -- Nature. 2012 Dec 20;492(7429):387-92. doi: 10.1038/nature11701. Epub 2012 Dec 9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23222541" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Binding Sites ; Crystallization ; Crystallography, X-Ray ; Enzyme Activation/genetics ; Humans ; Hydrolysis ; Lactones/chemistry/pharmacology ; Ligands ; Models, Molecular ; Molecular Dynamics Simulation ; Myocardial Infarction/prevention & control ; Protein Conformation ; Pyridines/chemistry/pharmacology ; Receptor, PAR-1/agonists/antagonists & inhibitors/*chemistry/metabolism ; Receptors, G-Protein-Coupled/chemistry/classification ; Receptors, Thrombin
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-24
    Description: Acetylcholine, the first neurotransmitter to be identified, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1-M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences. We describe here the structure of the G(q/11)-coupled M3 mAChR ('M3 receptor', from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the G(i/o)-coupled M2 receptor, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529910/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3529910/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kruse, Andrew C -- Hu, Jianxin -- Pan, Albert C -- Arlow, Daniel H -- Rosenbaum, Daniel M -- Rosemond, Erica -- Green, Hillary F -- Liu, Tong -- Chae, Pil Seok -- Dror, Ron O -- Shaw, David E -- Weis, William I -- Wess, Jurgen -- Kobilka, Brian K -- GM56169/GM/NIGMS NIH HHS/ -- NS028471/NS/NINDS NIH HHS/ -- R01 GM083118/GM/NIGMS NIH HHS/ -- R01 NS028471/NS/NINDS NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2012 Feb 22;482(7386):552-6. doi: 10.1038/nature10867.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22358844" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylcholine/chemistry/metabolism ; Allosteric Site ; Animals ; COS Cells ; Crystallization ; Crystallography, X-Ray ; Kinetics ; Ligands ; Models, Molecular ; Molecular Dynamics Simulation ; Radioligand Assay ; Rats ; Receptor, Muscarinic M3/*chemistry/*metabolism ; Scopolamine Derivatives/chemistry/metabolism ; Substrate Specificity ; Tiotropium Bromide
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...