ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (936)
  • Condensed Matter: Electronic Properties, etc.  (761)
  • Lunar and Planetary Science and Exploration  (441)
  • Astrophysics  (347)
  • Models, Molecular  (263)
  • 2010-2014  (2,710)
Collection
Keywords
Years
Year
  • 11
    Publication Date: 2014-11-22
    Description: The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MER) Spirit and Opportunity. The fraction of sand 〈150 micron in size contains approx. 55% crystalline material consistent with a basaltic heritage, and approx. 45% X-ray amorphous material. The amorphous component of Rocknest is Fe-rich and Si-poor, and is the host of the volatiles (H2O, O2, SO2, CO2, and Cl) detected by the Surface Analysis at Mars (SAM) instrument and of the fine-grained nanophase oxide (npOx) component first described from basaltic soils analyzed by MER. The similarity between soils and aeolian materials analyzed at Gusev crater, Meridiani Planum and Gale crater implies locally sourced, globally similar basaltic materials, or globally and regionally sourced basaltic components deposited locally at all three locations.
    Keywords: Lunar and Planetary Science and Exploration
    Type: ARC-E-DAA-TN11260
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2012-03-20
    Description: Targeted therapies have demonstrated efficacy against specific subsets of molecularly defined cancers. Although most patients with lung cancer are stratified according to a single oncogenic driver, cancers harbouring identical activating genetic mutations show large variations in their responses to the same targeted therapy. The biology underlying this heterogeneity is not well understood, and the impact of co-existing genetic mutations, especially the loss of tumour suppressors, has not been fully explored. Here we use genetically engineered mouse models to conduct a 'co-clinical' trial that mirrors an ongoing human clinical trial in patients with KRAS-mutant lung cancers. This trial aims to determine if the MEK inhibitor selumetinib (AZD6244) increases the efficacy of docetaxel, a standard of care chemotherapy. Our studies demonstrate that concomitant loss of either p53 (also known as Tp53) or Lkb1 (also known as Stk11), two clinically relevant tumour suppressors, markedly impaired the response of Kras-mutant cancers to docetaxel monotherapy. We observed that the addition of selumetinib provided substantial benefit for mice with lung cancer caused by Kras and Kras and p53 mutations, but mice with Kras and Lkb1 mutations had primary resistance to this combination therapy. Pharmacodynamic studies, including positron-emission tomography (PET) and computed tomography (CT), identified biological markers in mice and patients that provide a rationale for the differential efficacy of these therapies in the different genotypes. These co-clinical results identify predictive genetic biomarkers that should be validated by interrogating samples from patients enrolled on the concurrent clinical trial. These studies also highlight the rationale for synchronous co-clinical trials, not only to anticipate the results of ongoing human clinical trials, but also to generate clinically relevant hypotheses that can inform the analysis and design of human studies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3385933/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chen, Zhao -- Cheng, Katherine -- Walton, Zandra -- Wang, Yuchuan -- Ebi, Hiromichi -- Shimamura, Takeshi -- Liu, Yan -- Tupper, Tanya -- Ouyang, Jing -- Li, Jie -- Gao, Peng -- Woo, Michele S -- Xu, Chunxiao -- Yanagita, Masahiko -- Altabef, Abigail -- Wang, Shumei -- Lee, Charles -- Nakada, Yuji -- Pena, Christopher G -- Sun, Yanping -- Franchetti, Yoko -- Yao, Catherine -- Saur, Amy -- Cameron, Michael D -- Nishino, Mizuki -- Hayes, D Neil -- Wilkerson, Matthew D -- Roberts, Patrick J -- Lee, Carrie B -- Bardeesy, Nabeel -- Butaney, Mohit -- Chirieac, Lucian R -- Costa, Daniel B -- Jackman, David -- Sharpless, Norman E -- Castrillon, Diego H -- Demetri, George D -- Janne, Pasi A -- Pandolfi, Pier Paolo -- Cantley, Lewis C -- Kung, Andrew L -- Engelman, Jeffrey A -- Wong, Kwok-Kin -- 1U01CA141576/CA/NCI NIH HHS/ -- CA122794/CA/NCI NIH HHS/ -- CA137008/CA/NCI NIH HHS/ -- CA137008-01/CA/NCI NIH HHS/ -- CA137181/CA/NCI NIH HHS/ -- CA140594/CA/NCI NIH HHS/ -- CA147940/CA/NCI NIH HHS/ -- K23 CA157631/CA/NCI NIH HHS/ -- P01 CA120964/CA/NCI NIH HHS/ -- P30 CA016086/CA/NCI NIH HHS/ -- P50 CA090578/CA/NCI NIH HHS/ -- P50 CA090578-06/CA/NCI NIH HHS/ -- P50CA090578/CA/NCI NIH HHS/ -- R01 CA122794/CA/NCI NIH HHS/ -- R01 CA122794-01/CA/NCI NIH HHS/ -- R01 CA137008/CA/NCI NIH HHS/ -- R01 CA137008-01/CA/NCI NIH HHS/ -- R01 CA137181/CA/NCI NIH HHS/ -- R01 CA137181-01A2/CA/NCI NIH HHS/ -- R01 CA140594/CA/NCI NIH HHS/ -- R01 CA140594-01/CA/NCI NIH HHS/ -- R01 CA163896/CA/NCI NIH HHS/ -- RC2 CA147940/CA/NCI NIH HHS/ -- RC2 CA147940-01/CA/NCI NIH HHS/ -- U01 CA141576/CA/NCI NIH HHS/ -- U01 CA141576-01/CA/NCI NIH HHS/ -- England -- Nature. 2012 Mar 18;483(7391):613-7. doi: 10.1038/nature10937.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22425996" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antineoplastic Combined Chemotherapy Protocols ; Benzimidazoles/*pharmacology/therapeutic use ; Biomarkers, Tumor/genetics/metabolism ; *Clinical Trials, Phase II as Topic ; *Disease Models, Animal ; Drug Evaluation, Preclinical ; Fluorodeoxyglucose F18 ; Genes, p53/genetics ; Humans ; Lung Neoplasms/*drug therapy/enzymology/*genetics/metabolism ; MAP Kinase Signaling System/drug effects ; Mice ; Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors ; Mutation/genetics ; Pharmacogenetics/*methods ; Positron-Emission Tomography ; Protein-Serine-Threonine Kinases/deficiency/genetics ; Proto-Oncogene Proteins/genetics/metabolism ; Proto-Oncogene Proteins p21(ras)/genetics/metabolism ; Randomized Controlled Trials as Topic ; Reproducibility of Results ; Taxoids/*therapeutic use ; Tomography, X-Ray Computed ; Treatment Outcome ; ras Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2011-02-05
    Description: X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction 'snapshots' are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals ( approximately 200 nm to 2 mum in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3429598/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chapman, Henry N -- Fromme, Petra -- Barty, Anton -- White, Thomas A -- Kirian, Richard A -- Aquila, Andrew -- Hunter, Mark S -- Schulz, Joachim -- DePonte, Daniel P -- Weierstall, Uwe -- Doak, R Bruce -- Maia, Filipe R N C -- Martin, Andrew V -- Schlichting, Ilme -- Lomb, Lukas -- Coppola, Nicola -- Shoeman, Robert L -- Epp, Sascha W -- Hartmann, Robert -- Rolles, Daniel -- Rudenko, Artem -- Foucar, Lutz -- Kimmel, Nils -- Weidenspointner, Georg -- Holl, Peter -- Liang, Mengning -- Barthelmess, Miriam -- Caleman, Carl -- Boutet, Sebastien -- Bogan, Michael J -- Krzywinski, Jacek -- Bostedt, Christoph -- Bajt, Sasa -- Gumprecht, Lars -- Rudek, Benedikt -- Erk, Benjamin -- Schmidt, Carlo -- Homke, Andre -- Reich, Christian -- Pietschner, Daniel -- Struder, Lothar -- Hauser, Gunter -- Gorke, Hubert -- Ullrich, Joachim -- Herrmann, Sven -- Schaller, Gerhard -- Schopper, Florian -- Soltau, Heike -- Kuhnel, Kai-Uwe -- Messerschmidt, Marc -- Bozek, John D -- Hau-Riege, Stefan P -- Frank, Matthias -- Hampton, Christina Y -- Sierra, Raymond G -- Starodub, Dmitri -- Williams, Garth J -- Hajdu, Janos -- Timneanu, Nicusor -- Seibert, M Marvin -- Andreasson, Jakob -- Rocker, Andrea -- Jonsson, Olof -- Svenda, Martin -- Stern, Stephan -- Nass, Karol -- Andritschke, Robert -- Schroter, Claus-Dieter -- Krasniqi, Faton -- Bott, Mario -- Schmidt, Kevin E -- Wang, Xiaoyu -- Grotjohann, Ingo -- Holton, James M -- Barends, Thomas R M -- Neutze, Richard -- Marchesini, Stefano -- Fromme, Raimund -- Schorb, Sebastian -- Rupp, Daniela -- Adolph, Marcus -- Gorkhover, Tais -- Andersson, Inger -- Hirsemann, Helmut -- Potdevin, Guillaume -- Graafsma, Heinz -- Nilsson, Bjorn -- Spence, John C H -- 1R01GM095583-01/GM/NIGMS NIH HHS/ -- 1U54GM094625-01/GM/NIGMS NIH HHS/ -- R01 GM095583/GM/NIGMS NIH HHS/ -- U54 GM094599/GM/NIGMS NIH HHS/ -- U54 GM094625/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Feb 3;470(7332):73-7. doi: 10.1038/nature09750.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Free-Electron Laser Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany. henry.chapman@desy.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21293373" target="_blank"〉PubMed〈/a〉
    Keywords: Crystallography, X-Ray/instrumentation/*methods ; Lasers ; Models, Molecular ; Nanoparticles/*chemistry ; Nanotechnology/instrumentation/*methods ; Photosystem I Protein Complex/*chemistry ; Protein Conformation ; Time Factors ; X-Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2012-07-18
    Description: Amyotrophic lateral sclerosis (ALS) is a late-onset neurodegenerative disorder resulting from motor neuron death. Approximately 10% of cases are familial (FALS), typically with a dominant inheritance mode. Despite numerous advances in recent years, nearly 50% of FALS cases have unknown genetic aetiology. Here we show that mutations within the profilin 1 (PFN1) gene can cause FALS. PFN1 is crucial for the conversion of monomeric (G)-actin to filamentous (F)-actin. Exome sequencing of two large ALS families showed different mutations within the PFN1 gene. Further sequence analysis identified 4 mutations in 7 out of 274 FALS cases. Cells expressing PFN1 mutants contain ubiquitinated, insoluble aggregates that in many cases contain the ALS-associated protein TDP-43. PFN1 mutants also display decreased bound actin levels and can inhibit axon outgrowth. Furthermore, primary motor neurons expressing mutant PFN1 display smaller growth cones with a reduced F/G-actin ratio. These observations further document that cytoskeletal pathway alterations contribute to ALS pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575525/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3575525/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wu, Chi-Hong -- Fallini, Claudia -- Ticozzi, Nicola -- Keagle, Pamela J -- Sapp, Peter C -- Piotrowska, Katarzyna -- Lowe, Patrick -- Koppers, Max -- McKenna-Yasek, Diane -- Baron, Desiree M -- Kost, Jason E -- Gonzalez-Perez, Paloma -- Fox, Andrew D -- Adams, Jenni -- Taroni, Franco -- Tiloca, Cinzia -- Leclerc, Ashley Lyn -- Chafe, Shawn C -- Mangroo, Dev -- Moore, Melissa J -- Zitzewitz, Jill A -- Xu, Zuo-Shang -- van den Berg, Leonard H -- Glass, Jonathan D -- Siciliano, Gabriele -- Cirulli, Elizabeth T -- Goldstein, David B -- Salachas, Francois -- Meininger, Vincent -- Rossoll, Wilfried -- Ratti, Antonia -- Gellera, Cinzia -- Bosco, Daryl A -- Bassell, Gary J -- Silani, Vincenzo -- Drory, Vivian E -- Brown, Robert H Jr -- Landers, John E -- 1R01NS050557/NS/NINDS NIH HHS/ -- 1R01NS065847/NS/NINDS NIH HHS/ -- R01 NS050557/NS/NINDS NIH HHS/ -- RC2 NS070342/NS/NINDS NIH HHS/ -- RC2-NS070-342/NS/NINDS NIH HHS/ -- T32 GM007754/GM/NIGMS NIH HHS/ -- U01 NS052225/NS/NINDS NIH HHS/ -- UL1 TR000454/TR/NCATS NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Aug 23;488(7412):499-503. doi: 10.1038/nature11280.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22801503" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Amino Acid Sequence ; Amyotrophic Lateral Sclerosis/diagnosis/*genetics/metabolism/*pathology ; Animals ; Axons/metabolism/pathology ; Cells, Cultured ; European Continental Ancestry Group/genetics ; Exome/genetics ; Female ; Genetic Predisposition to Disease/*genetics ; Growth Cones/metabolism ; High-Throughput Nucleotide Sequencing ; Humans ; Jews/genetics ; Male ; Mice ; Models, Molecular ; Molecular Sequence Data ; Motor Neurons/cytology/metabolism ; Mutant Proteins/genetics/*metabolism ; Mutation/*genetics ; Pedigree ; Profilins/*genetics/*metabolism ; Protein Conformation ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2019-07-13
    Description: The National Aeronautics and Space Administration s Human Spaceflight Architecture Team (HAT) has been developing a preliminary Destination Mission Concept (DMC) to assess how a human orbital mission to one or both of the Martian moons, Phobos and Deimos, might be conducted as a follow-on to a human mission to a near-Earth asteroid (NEA) and as a possible preliminary step prior to a human landing on Mars. The HAT Mars-Phobos-Deimos (MPD) mission also permits the teleoperation of robotic systems by the crew while in the Mars system. The DMC development activity provides an initial effort to identify the science and exploration objectives and investigate the capabilities and operations concepts required for a human orbital mission to the Mars system. In addition, the MPD Team identified potential synergistic opportunities via prior exploration of other destinations currently under consideration.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-26565 , Concepts and Approaches for Mars Exploration; Jun 12, 2012 - Jun 14, 2012; Houston, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2019-07-13
    Description: The Curiosity rover investigated the mineralogy of the Sheepbed mudstone member of the Yellowknife Bay formation in Gale crater. Data from the Chemistry and Mineralogy (CheMin) X-ray diffractometer (XRD) helped identify phyllosilicates in the two drilled samples, John Klein and Cumberland. These patterns showed peaks at low angles, consistent with (001) peaks in 2:1 swelling phyllosilicates [1]. Evolved gas analyses (EGA) by the Sample Analysis at Mars (SAM) instrument of these samples confirmed the presence of phyllosilicates through the release of H2O at high temperatures, consistent with dehydroxylation of octahedral OH in phyllosilicates [2]. CheMin data for the phyllosilicates at John Klein and Cumberland show that they are structurally similar in that their (02l) peaks are near 22.5 deg 2theta, suggesting both samples contain trioctahedral 2:1 phyllosilicates [1]. However, the positions of the (001) peaks differ: the phyllosilicate at John Klein has its (001) peak at 10 Angstroms, whereas the phyllosilicate at Cumberland has an (001) peak at 14 Angstroms. Such differences in (001) dspacings can be ascribed to the type of cation in the interlayer site [3]. For example, large monovalent cations (e.g., K(+)) have low hydration energies and readily lose their H2O of hydration, whereas small divalent cations (e.g., Mg(2+)) have high energies of hydration and retain H2O in the phyllosilicate interlayers [3,4]. The goal of this study is to determine whether differences in the interlayer cation composition can explain the CheMin data from John Klein and Cumberland and to use this knowledge to better understand phyllosilicate formation mechanisms.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-30371 , Lunar and Planetary Science Conference; Mar 17, 2014 - Mar 21, 2014; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2010-06-18
    Description: Sialic acid acetylesterase (SIAE) is an enzyme that negatively regulates B lymphocyte antigen receptor signalling and is required for the maintenance of immunological tolerance in mice. Heterozygous loss-of-function germline rare variants and a homozygous defective polymorphic variant of SIAE were identified in 24/923 subjects of European origin with relatively common autoimmune disorders and in 2/648 controls of European origin. All heterozygous loss-of-function SIAE mutations tested were capable of functioning in a dominant negative manner. A homozygous secretion-defective polymorphic variant of SIAE was catalytically active, lacked the ability to function in a dominant negative manner, and was seen in eight autoimmune subjects but in no control subjects. The odds ratio for inheriting defective SIAE alleles was 8.6 in all autoimmune subjects, 8.3 in subjects with rheumatoid arthritis, and 7.9 in subjects with type I diabetes. Functionally defective SIAE rare and polymorphic variants represent a strong genetic link to susceptibility in relatively common human autoimmune disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900412/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900412/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Surolia, Ira -- Pirnie, Stephan P -- Chellappa, Vasant -- Taylor, Kendra N -- Cariappa, Annaiah -- Moya, Jesse -- Liu, Haoyuan -- Bell, Daphne W -- Driscoll, David R -- Diederichs, Sven -- Haider, Khaleda -- Netravali, Ilka -- Le, Sheila -- Elia, Roberto -- Dow, Ethan -- Lee, Annette -- Freudenberg, Jan -- De Jager, Philip L -- Chretien, Yves -- Varki, Ajit -- MacDonald, Marcy E -- Gillis, Tammy -- Behrens, Timothy W -- Bloch, Donald -- Collier, Deborah -- Korzenik, Joshua -- Podolsky, Daniel K -- Hafler, David -- Murali, Mandakolathur -- Sands, Bruce -- Stone, John H -- Gregersen, Peter K -- Pillai, Shiv -- AI 064930/AI/NIAID NIH HHS/ -- AI 068759/AI/NIAID NIH HHS/ -- AI 076505/AI/NIAID NIH HHS/ -- AR 022263/AR/NIAMS NIH HHS/ -- AR 044422/AR/NIAMS NIH HHS/ -- AR 058481/AR/NIAMS NIH HHS/ -- NS 32765/NS/NINDS NIH HHS/ -- P30 DK043351/DK/NIDDK NIH HHS/ -- R01 AI064930/AI/NIAID NIH HHS/ -- R01 AI064930-04/AI/NIAID NIH HHS/ -- R01 AI068759/AI/NIAID NIH HHS/ -- R01 AI068759-05/AI/NIAID NIH HHS/ -- R01 AI076505/AI/NIAID NIH HHS/ -- R01 AI076505-02/AI/NIAID NIH HHS/ -- R01 AR044422/AR/NIAMS NIH HHS/ -- R01 AR044422-13/AR/NIAMS NIH HHS/ -- RC1 AR058481/AR/NIAMS NIH HHS/ -- RC1 AR058481-01/AR/NIAMS NIH HHS/ -- England -- Nature. 2010 Jul 8;466(7303):243-7. doi: 10.1038/nature09115. Epub 2010 Jun 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20555325" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Acetylesterase/*genetics/metabolism/secretion ; Alleles ; Animals ; Antibodies, Antinuclear/blood ; Arthritis, Rheumatoid/enzymology/genetics ; Autoimmune Diseases/*enzymology/*genetics ; Autoimmunity/*genetics ; B-Lymphocytes/metabolism ; Biocatalysis ; Carboxylic Ester Hydrolases/*genetics/metabolism/secretion ; Case-Control Studies ; Cell Line ; Diabetes Mellitus, Type 1/enzymology/genetics ; Europe/ethnology ; Exons/genetics ; Genetic Predisposition to Disease/*genetics ; Germ-Line Mutation/*genetics ; Humans ; Mice ; N-Acetylneuraminic Acid/*metabolism ; Odds Ratio ; Polymorphism, Single Nucleotide/genetics ; Sample Size ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2012-11-09
    Description: Defects in the availability of haem substrates or the catalytic activity of the terminal enzyme in haem biosynthesis, ferrochelatase (Fech), impair haem synthesis and thus cause human congenital anaemias. The interdependent functions of regulators of mitochondrial homeostasis and enzymes responsible for haem synthesis are largely unknown. To investigate this we used zebrafish genetic screens and cloned mitochondrial ATPase inhibitory factor 1 (atpif1) from a zebrafish mutant with profound anaemia, pinotage (pnt (tq209)). Here we describe a direct mechanism establishing that Atpif1 regulates the catalytic efficiency of vertebrate Fech to synthesize haem. The loss of Atpif1 impairs haemoglobin synthesis in zebrafish, mouse and human haematopoietic models as a consequence of diminished Fech activity and elevated mitochondrial pH. To understand the relationship between mitochondrial pH, redox potential, [2Fe-2S] clusters and Fech activity, we used genetic complementation studies of Fech constructs with or without [2Fe-2S] clusters in pnt, as well as pharmacological agents modulating mitochondrial pH and redox potential. The presence of [2Fe-2S] cluster renders vertebrate Fech vulnerable to perturbations in Atpif1-regulated mitochondrial pH and redox potential. Therefore, Atpif1 deficiency reduces the efficiency of vertebrate Fech to synthesize haem, resulting in anaemia. The identification of mitochondrial Atpif1 as a regulator of haem synthesis advances our understanding of the mechanisms regulating mitochondrial haem homeostasis and red blood cell development. An ATPIF1 deficiency may contribute to important human diseases, such as congenital sideroblastic anaemias and mitochondriopathies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504625/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3504625/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shah, Dhvanit I -- Takahashi-Makise, Naoko -- Cooney, Jeffrey D -- Li, Liangtao -- Schultz, Iman J -- Pierce, Eric L -- Narla, Anupama -- Seguin, Alexandra -- Hattangadi, Shilpa M -- Medlock, Amy E -- Langer, Nathaniel B -- Dailey, Tamara A -- Hurst, Slater N -- Faccenda, Danilo -- Wiwczar, Jessica M -- Heggers, Spencer K -- Vogin, Guillaume -- Chen, Wen -- Chen, Caiyong -- Campagna, Dean R -- Brugnara, Carlo -- Zhou, Yi -- Ebert, Benjamin L -- Danial, Nika N -- Fleming, Mark D -- Ward, Diane M -- Campanella, Michelangelo -- Dailey, Harry A -- Kaplan, Jerry -- Paw, Barry H -- K01 DK085217/DK/NIDDK NIH HHS/ -- P01 HL032262/HL/NHLBI NIH HHS/ -- P30 DK072437/DK/NIDDK NIH HHS/ -- R01 DK052380/DK/NIDDK NIH HHS/ -- R01 DK070838/DK/NIDDK NIH HHS/ -- R01 DK096051/DK/NIDDK NIH HHS/ -- R01 HL082945/HL/NHLBI NIH HHS/ -- T32 GM007223/GM/NIGMS NIH HHS/ -- England -- Nature. 2012 Nov 22;491(7425):608-12. doi: 10.1038/nature11536. Epub 2012 Nov 7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Division of Hematology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23135403" target="_blank"〉PubMed〈/a〉
    Keywords: Anemia, Sideroblastic/genetics/metabolism/pathology ; Animals ; Disease Models, Animal ; Erythroblasts/cytology/*metabolism ; *Erythropoiesis ; Ferrochelatase/metabolism ; Genetic Complementation Test ; Heme/*biosynthesis ; Humans ; Hydrogen-Ion Concentration ; Mice ; Mitochondria/*metabolism/pathology ; Mitochondrial Proteins/deficiency/genetics/*metabolism ; Oxidation-Reduction ; Proteins/genetics/*metabolism ; Zebrafish/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Publication Date: 2014-09-16
    Description: The Ras-like GTPases RalA and RalB are important drivers of tumour growth and metastasis. Chemicals that block Ral function would be valuable as research tools and for cancer therapeutics. Here we used protein structure analysis and virtual screening to identify drug-like molecules that bind to a site on the GDP-bound form of Ral. The compounds RBC6, RBC8 and RBC10 inhibited the binding of Ral to its effector RALBP1, as well as inhibiting Ral-mediated cell spreading of murine embryonic fibroblasts and anchorage-independent growth of human cancer cell lines. The binding of the RBC8 derivative BQU57 to RalB was confirmed by isothermal titration calorimetry, surface plasmon resonance and (1)H-(15)N transverse relaxation-optimized spectroscopy (TROSY) NMR spectroscopy. RBC8 and BQU57 show selectivity for Ral relative to the GTPases Ras and RhoA and inhibit tumour xenograft growth to a similar extent to the depletion of Ral using RNA interference. Our results show the utility of structure-based discovery for the development of therapeutics for Ral-dependent cancers.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351747/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351747/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Yan, Chao -- Liu, Degang -- Li, Liwei -- Wempe, Michael F -- Guin, Sunny -- Khanna, May -- Meier, Jeremy -- Hoffman, Brenton -- Owens, Charles -- Wysoczynski, Christina L -- Nitz, Matthew D -- Knabe, William E -- Ahmed, Mansoor -- Brautigan, David L -- Paschal, Bryce M -- Schwartz, Martin A -- Jones, David N M -- Ross, David -- Meroueh, Samy O -- Theodorescu, Dan -- CA075115/CA/NCI NIH HHS/ -- CA091846/CA/NCI NIH HHS/ -- CA104106/CA/NCI NIH HHS/ -- GM47214/GM/NIGMS NIH HHS/ -- P01 CA104106/CA/NCI NIH HHS/ -- P30 CA044579/CA/NCI NIH HHS/ -- P30 CA046934/CA/NCI NIH HHS/ -- P50 CA091846/CA/NCI NIH HHS/ -- R01 CA075115/CA/NCI NIH HHS/ -- R01 CA143971/CA/NCI NIH HHS/ -- T32 GM007635/GM/NIGMS NIH HHS/ -- UL1 TR001082/TR/NCATS NIH HHS/ -- UL1TR001082/TR/NCATS NIH HHS/ -- England -- Nature. 2014 Nov 20;515(7527):443-7. doi: 10.1038/nature13713. Epub 2014 Sep 14.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA. ; Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA. ; Department of Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045, USA. ; Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia 22908, USA. ; Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA. ; Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Department of Cardiology, Yale University, New Haven, Connecticut 06511, USA [2] Department of Cell Biology, Yale University, New Haven, Connecticut 06511, USA. ; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia 22908, USA. ; 1] Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA [2] Department of Chemistry and Chemical Biology, Indiana University - Purdue University, Indianapolis, Indiana 46202, USA. ; 1] Department of Surgery, University of Colorado, Aurora, Colorado 80045, USA [2] Department of Pharmacology, University of Colorado, Aurora, Colorado 80045, USA [3] University of Colorado Comprehensive Cancer Center, Aurora, Colorado 80045, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25219851" target="_blank"〉PubMed〈/a〉
    Keywords: ATP-Binding Cassette Transporters/metabolism ; Animals ; Cell Line, Tumor ; Cell Proliferation/drug effects ; Computer Simulation ; *Drug Screening Assays, Antitumor ; Female ; GTPase-Activating Proteins/metabolism ; Humans ; Mice ; Models, Molecular ; *Molecular Targeted Therapy ; Neoplasms/drug therapy/enzymology/metabolism/pathology ; Protein Binding/drug effects ; Signal Transduction/drug effects ; Small Molecule Libraries/*chemistry/*pharmacology ; Substrate Specificity ; Xenograft Model Antitumor Assays ; ral GTP-Binding Proteins/*antagonists & inhibitors/chemistry/metabolism ; ras Proteins/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Publication Date: 2011-01-21
    Description: The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of approximately 3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030920/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030920/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Varela, Ignacio -- Tarpey, Patrick -- Raine, Keiran -- Huang, Dachuan -- Ong, Choon Kiat -- Stephens, Philip -- Davies, Helen -- Jones, David -- Lin, Meng-Lay -- Teague, Jon -- Bignell, Graham -- Butler, Adam -- Cho, Juok -- Dalgliesh, Gillian L -- Galappaththige, Danushka -- Greenman, Chris -- Hardy, Claire -- Jia, Mingming -- Latimer, Calli -- Lau, King Wai -- Marshall, John -- McLaren, Stuart -- Menzies, Andrew -- Mudie, Laura -- Stebbings, Lucy -- Largaespada, David A -- Wessels, L F A -- Richard, Stephane -- Kahnoski, Richard J -- Anema, John -- Tuveson, David A -- Perez-Mancera, Pedro A -- Mustonen, Ville -- Fischer, Andrej -- Adams, David J -- Rust, Alistair -- Chan-on, Waraporn -- Subimerb, Chutima -- Dykema, Karl -- Furge, Kyle -- Campbell, Peter J -- Teh, Bin Tean -- Stratton, Michael R -- Futreal, P Andrew -- 077012/Wellcome Trust/United Kingdom -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- R01 CA113636/CA/NCI NIH HHS/ -- R01 CA134759/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 Jan 27;469(7331):539-42. doi: 10.1038/nature09639. Epub 2011 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21248752" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinoma, Renal Cell/*genetics ; Cell Line, Tumor ; Disease Models, Animal ; Gene Expression Regulation ; Gene Knockdown Techniques ; Humans ; Kidney Neoplasms/*genetics ; Mice ; Mutation/*genetics ; Nuclear Proteins/*genetics/*metabolism ; Pancreatic Neoplasms/genetics ; Transcription Factors/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...