ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Articles  (25)
  • Humans  (23)
  • Phylogeny  (6)
  • Nature Publishing Group (NPG)  (25)
  • 2010-2014  (25)
Collection
  • Articles  (25)
Publisher
Years
Year
  • 1
    Publication Date: 2010-01-19
    Description: Influenza A virus, being responsible for seasonal epidemics and reoccurring pandemics, represents a worldwide threat to public health. High mutation rates facilitate the generation of viral escape mutants, rendering vaccines and drugs directed against virus-encoded targets potentially ineffective. In contrast, targeting host cell determinants temporarily dispensable for the host but crucial for virus replication could prevent viral escape. Here we report the discovery of 287 human host cell genes influencing influenza A virus replication in a genome-wide RNA interference (RNAi) screen. Using an independent assay we confirmed 168 hits (59%) inhibiting either the endemic H1N1 (119 hits) or the current pandemic swine-origin (121 hits) influenza A virus strains, with an overlap of 60%. Notably, a subset of these common hits was also essential for replication of a highly pathogenic avian H5N1 strain. In-depth analyses of several factors provided insights into their infection stage relevance. Notably, SON DNA binding protein (SON) was found to be important for normal trafficking of influenza virions to late endosomes early in infection. We also show that a small molecule inhibitor of CDC-like kinase 1 (CLK1) reduces influenza virus replication by more than two orders of magnitude, an effect connected with impaired splicing of the viral M2 messenger RNA. Furthermore, influenza-virus-infected p27(-/-) (cyclin-dependent kinase inhibitor 1B; Cdkn1b) mice accumulated significantly lower viral titres in the lung, providing in vivo evidence for the importance of this gene. Thus, our results highlight the potency of genome-wide RNAi screening for the dissection of virus-host interactions and the identification of drug targets for a broad range of influenza viruses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Karlas, Alexander -- Machuy, Nikolaus -- Shin, Yujin -- Pleissner, Klaus-Peter -- Artarini, Anita -- Heuer, Dagmar -- Becker, Daniel -- Khalil, Hany -- Ogilvie, Lesley A -- Hess, Simone -- Maurer, Andre P -- Muller, Elke -- Wolff, Thorsten -- Rudel, Thomas -- Meyer, Thomas F -- England -- Nature. 2010 Feb 11;463(7282):818-22. doi: 10.1038/nature08760. Epub 2010 Jan 17.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Molecular Biology Department, Max Planck Institute for Infection Biology, Chariteplatz 1, 10117 Berlin, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20081832" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Biological Factors/genetics/metabolism ; Cell Line ; Cells, Cultured ; Chick Embryo ; Cyclin-Dependent Kinase Inhibitor p27/deficiency/genetics/metabolism ; Epithelial Cells/virology ; Genome, Human/genetics ; *Host-Pathogen Interactions/genetics/physiology ; Humans ; Influenza A Virus, H1N1 Subtype/classification/*growth & development ; Influenza, Human/*genetics/*virology ; Lung/cytology ; Mice ; Mice, Inbred C57BL ; Protein-Serine-Threonine Kinases/genetics ; Protein-Tyrosine Kinases/genetics ; *RNA Interference ; Virus Replication/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-10-01
    Description: RANK ligand (RANKL), a TNF-related molecule, is essential for osteoclast formation, function and survival through interaction with its receptor RANK. Mammary glands of RANK- and RANKL-deficient mice develop normally during sexual maturation, but fail to form lobuloalveolar structures during pregnancy because of defective proliferation and increased apoptosis of mammary epithelium. It has been shown that RANKL is responsible for the major proliferative response of mouse mammary epithelium to progesterone during mammary lactational morphogenesis, and in mouse models, manipulated to induce activation of the RANK/RANKL pathway in the absence of strict hormonal control, inappropriate mammary proliferation is observed. However, there is no evidence so far of a functional contribution of RANKL to tumorigenesis. Here we show that RANK and RANKL are expressed within normal, pre-malignant and neoplastic mammary epithelium, and using complementary gain-of-function (mouse mammary tumour virus (MMTV)-RANK transgenic mice) and loss-of function (pharmacological inhibition of RANKL) approaches, define a direct contribution of this pathway in mammary tumorigenesis. Accelerated pre-neoplasias and increased mammary tumour formation were observed in MMTV-RANK transgenic mice after multiparity or treatment with carcinogen and hormone (progesterone). Reciprocally, selective pharmacological inhibition of RANKL attenuated mammary tumour development not only in hormone- and carcinogen-treated MMTV-RANK and wild-type mice, but also in the MMTV-neu transgenic spontaneous tumour model. The reduction in tumorigenesis upon RANKL inhibition was preceded by a reduction in pre-neoplasias as well as rapid and sustained reductions in hormone- and carcinogen-induced mammary epithelial proliferation and cyclin D1 levels. Collectively, our results indicate that RANKL inhibition is acting directly on hormone-induced mammary epithelium at early stages in tumorigenesis, and the permissive contribution of progesterone to increased mammary cancer incidence is due to RANKL-dependent proliferative changes in the mammary epithelium. The current study highlights a potential role for RANKL inhibition in the management of proliferative breast disease.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gonzalez-Suarez, Eva -- Jacob, Allison P -- Jones, Jon -- Miller, Robert -- Roudier-Meyer, Martine P -- Erwert, Ryan -- Pinkas, Jan -- Branstetter, Dan -- Dougall, William C -- England -- Nature. 2010 Nov 4;468(7320):103-7. doi: 10.1038/nature09495. Epub 2010 Sep 29.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Hematology/Oncology Research, Amgen Inc, Seattle, Washington 98119, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20881963" target="_blank"〉PubMed〈/a〉
    Keywords: 9,10-Dimethyl-1,2-benzanthracene/administration & dosage/adverse effects ; Animals ; Breast Neoplasms/metabolism/pathology ; Cell Proliferation/drug effects ; Cell Transformation, Neoplastic/*chemically induced/*drug effects/pathology ; Disease Models, Animal ; Epithelial Cells/drug effects/metabolism/pathology ; Female ; Humans ; Lung Neoplasms/secondary ; Mammary Neoplasms, Experimental/*chemically ; induced/genetics/metabolism/*pathology ; Mammary Tumor Virus, Mouse/genetics/physiology ; Medroxyprogesterone Acetate/administration & dosage/adverse effects ; Mice ; Mice, Inbred C57BL ; Mice, Transgenic ; Neoplasm Invasiveness ; Precancerous Conditions/pathology/prevention & control ; Progesterone/administration & dosage/adverse effects ; Progestins/administration & dosage/*adverse effects ; RANK Ligand/antagonists & inhibitors/genetics/*metabolism ; Receptor Activator of Nuclear Factor-kappa B/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-09-17
    Description: 〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175758/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3175758/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Collins, Sean -- Meyer, Tobias -- R01 GM030179/GM/NIGMS NIH HHS/ -- R01 GM030179-24A1/GM/NIGMS NIH HHS/ -- England -- Nature. 2010 Sep 16;467(7313):283. doi: 10.1038/467283a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20844529" target="_blank"〉PubMed〈/a〉
    Keywords: Allergens/chemistry/*metabolism ; Animals ; Antigens, Plant ; Calcium/*metabolism ; *Calcium Signaling ; Calcium-Binding Proteins/chemistry/*metabolism ; Cation Transport Proteins ; Cytoplasm/metabolism ; EF Hand Motifs ; Endoplasmic Reticulum/metabolism ; Humans ; Mitochondria/*metabolism ; Mitochondrial Membrane Transport Proteins ; Mitochondrial Proteins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-11-12
    Description: Functional and structural brain imaging has identified neural and neurotransmitter systems involved in schizophrenia and their link to cognitive and behavioural disturbances such as psychosis. Mapping such abnormalities in patients, however, cannot fully capture the strong neurodevelopmental component of schizophrenia that pre-dates manifest illness. A recent strategy to address this issue has been to focus on mechanisms of disease risk. Imaging genetics techniques have made it possible to define neural systems that mediate heritable risk linked to candidate and genome-wide-supported common variants, and mechanisms for environmental risk and gene-environment interactions are emerging. Characterizing the neural risk architecture of schizophrenia provides a translational research strategy for future treatments.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Meyer-Lindenberg, Andreas -- England -- Nature. 2010 Nov 11;468(7321):194-202. doi: 10.1038/nature09569.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Central Institute of Mental Health, University of Heidelberg/Medical Faculty Mannheim, J5, 68159 Mannheim, Germany. a.meyer-lindenberg@zi-mannheim.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068827" target="_blank"〉PubMed〈/a〉
    Keywords: *Brain Mapping/methods ; Environment ; Genetic Predisposition to Disease ; Humans ; Molecular Imaging ; Psychotic Disorders/etiology/physiopathology ; Schizophrenia/*diagnosis/genetics/*physiopathology/therapy
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-07-03
    Description: Alopecia areata (AA) is among the most highly prevalent human autoimmune diseases, leading to disfiguring hair loss due to the collapse of immune privilege of the hair follicle and subsequent autoimmune attack. The genetic basis of AA is largely unknown. We undertook a genome-wide association study (GWAS) in a sample of 1,054 cases and 3,278 controls and identified 139 single nucleotide polymorphisms that are significantly associated with AA (P 〈or= 5 x 10(-7)). Here we show an association with genomic regions containing several genes controlling the activation and proliferation of regulatory T cells (T(reg) cells), cytotoxic T lymphocyte-associated antigen 4 (CTLA4), interleukin (IL)-2/IL-21, IL-2 receptor A (IL-2RA; CD25) and Eos (also known as Ikaros family zinc finger 4; IKZF4), as well as the human leukocyte antigen (HLA) region. We also find association evidence for regions containing genes expressed in the hair follicle itself (PRDX5 and STX17). A region of strong association resides within the ULBP (cytomegalovirus UL16-binding protein) gene cluster on chromosome 6q25.1, encoding activating ligands of the natural killer cell receptor NKG2D that have not previously been implicated in an autoimmune disease. By probing the role of ULBP3 in disease pathogenesis, we also show that its expression in lesional scalp from patients with AA is markedly upregulated in the hair follicle dermal sheath during active disease. This study provides evidence for the involvement of both innate and acquired immunity in the pathogenesis of AA. We have defined the genetic underpinnings of AA, placing it within the context of shared pathways among autoimmune diseases, and implicating a novel disease mechanism, the upregulation of ULBP ligands, in triggering autoimmunity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921172/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2921172/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Petukhova, Lynn -- Duvic, Madeleine -- Hordinsky, Maria -- Norris, David -- Price, Vera -- Shimomura, Yutaka -- Kim, Hyunmi -- Singh, Pallavi -- Lee, Annette -- Chen, Wei V -- Meyer, Katja C -- Paus, Ralf -- Jahoda, Colin A B -- Amos, Christopher I -- Gregersen, Peter K -- Christiano, Angela M -- P30CA016772/CA/NCI NIH HHS/ -- R01 AR056016/AR/NIAMS NIH HHS/ -- R01 AR056016-03/AR/NIAMS NIH HHS/ -- R01AR44422/AR/NIAMS NIH HHS/ -- R01AR52579/AR/NIAMS NIH HHS/ -- R01AR56016/AR/NIAMS NIH HHS/ -- R01CA133996/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jul 1;466(7302):113-7. doi: 10.1038/nature09114.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Dermatology, Columbia University, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20596022" target="_blank"〉PubMed〈/a〉
    Keywords: Adaptive Immunity/*genetics/immunology ; Adult ; Aged ; Alleles ; Alopecia Areata/*genetics/immunology ; Antigens, CD/genetics ; Autoimmune Diseases/*genetics/immunology ; CTLA-4 Antigen ; Case-Control Studies ; Female ; GPI-Linked Proteins ; *Genetic Predisposition to Disease ; *Genome-Wide Association Study ; Hair Follicle/cytology/immunology/metabolism ; Humans ; Ikaros Transcription Factor/genetics ; Immunity, Innate/*genetics/immunology ; Intercellular Signaling Peptides and Proteins/genetics/metabolism ; Interleukin-2 Receptor alpha Subunit/genetics ; Male ; Middle Aged ; NK Cell Lectin-Like Receptor Subfamily K/immunology ; Peroxiredoxins/genetics ; Polymorphism, Single Nucleotide/genetics ; Qa-SNARE Proteins/genetics ; T-Lymphocytes, Regulatory/cytology/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-10-21
    Description: So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers. The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene; it also stimulates the transcription of hypoxia inducible factor (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes. We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (PsiKXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K-occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bertolotto, Corine -- Lesueur, Fabienne -- Giuliano, Sandy -- Strub, Thomas -- de Lichy, Mahaut -- Bille, Karine -- Dessen, Philippe -- d'Hayer, Benoit -- Mohamdi, Hamida -- Remenieras, Audrey -- Maubec, Eve -- de la Fouchardiere, Arnaud -- Molinie, Vincent -- Vabres, Pierre -- Dalle, Stephane -- Poulalhon, Nicolas -- Martin-Denavit, Tanguy -- Thomas, Luc -- Andry-Benzaquen, Pascale -- Dupin, Nicolas -- Boitier, Francoise -- Rossi, Annick -- Perrot, Jean-Luc -- Labeille, Bruno -- Robert, Caroline -- Escudier, Bernard -- Caron, Olivier -- Brugieres, Laurence -- Saule, Simon -- Gardie, Betty -- Gad, Sophie -- Richard, Stephane -- Couturier, Jerome -- Teh, Bin Tean -- Ghiorzo, Paola -- Pastorino, Lorenza -- Puig, Susana -- Badenas, Celia -- Olsson, Hakan -- Ingvar, Christian -- Rouleau, Etienne -- Lidereau, Rosette -- Bahadoran, Philippe -- Vielh, Philippe -- Corda, Eve -- Blanche, Helene -- Zelenika, Diana -- Galan, Pilar -- French Familial Melanoma Study Group -- Aubin, Francois -- Bachollet, Bertrand -- Becuwe, Celine -- Berthet, Pascaline -- Bignon, Yves Jean -- Bonadona, Valerie -- Bonafe, Jean-Louis -- Bonnet-Dupeyron, Marie-Noelle -- Cambazard, Frederic -- Chevrant-Breton, Jacqueline -- Coupier, Isabelle -- Dalac, Sophie -- Demange, Liliane -- d'Incan, Michel -- Dugast, Catherine -- Faivre, Laurence -- Vincent-Fetita, Lynda -- Gauthier-Villars, Marion -- Gilbert, Brigitte -- Grange, Florent -- Grob, Jean-Jacques -- Humbert, Philippe -- Janin, Nicolas -- Joly, Pascal -- Kerob, Delphine -- Lasset, Christine -- Leroux, Dominique -- Levang, Julien -- Limacher, Jean-Marc -- Livideanu, Cristina -- Longy, Michel -- Lortholary, Alain -- Stoppa-Lyonnet, Dominique -- Mansard, Sandrine -- Mansuy, Ludovic -- Marrou, Karine -- Mateus, Christine -- Maugard, Christine -- Meyer, Nicolas -- Nogues, Catherine -- Souteyrand, Pierre -- Venat-Bouvet, Laurence -- Zattara, Helene -- Chaudru, Valerie -- Lenoir, Gilbert M -- Lathrop, Mark -- Davidson, Irwin -- Avril, Marie-Francoise -- Demenais, Florence -- Ballotti, Robert -- Bressac-de Paillerets, Brigitte -- England -- Nature. 2011 Oct 19;480(7375):94-8. doi: 10.1038/nature10539.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] INSERM, U895 (equipe 1), Equipe labelisee Ligue Contre le Cancer, C3M, 06204 Nice, France [2] Universite of Nice Sophia-Antipolis, UFR Medecine, 06204 Nice, France [3] Centre Hospitalier Universitaire de Nice, Service de Dermatologie, 06204 Nice, France [4].〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22012259" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Renal Cell/*genetics ; Cell Movement/genetics ; Gene Frequency ; *Genetic Predisposition to Disease ; *Germ-Line Mutation ; Humans ; Melanoma/*genetics ; Microphthalmia-Associated Transcription Factor/*genetics ; Neoplasm Invasiveness/genetics ; Sumoylation
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-07-29
    Description: Follicular lymphoma (FL) and diffuse large B-cell lymphoma (DLBCL) are the two most common non-Hodgkin lymphomas (NHLs). Here we sequenced tumour and matched normal DNA from 13 DLBCL cases and one FL case to identify genes with mutations in B-cell NHL. We analysed RNA-seq data from these and another 113 NHLs to identify genes with candidate mutations, and then re-sequenced tumour and matched normal DNA from these cases to confirm 109 genes with multiple somatic mutations. Genes with roles in histone modification were frequent targets of somatic mutation. For example, 32% of DLBCL and 89% of FL cases had somatic mutations in MLL2, which encodes a histone methyltransferase, and 11.4% and 13.4% of DLBCL and FL cases, respectively, had mutations in MEF2B, a calcium-regulated gene that cooperates with CREBBP and EP300 in acetylating histones. Our analysis suggests a previously unappreciated disruption of chromatin biology in lymphomagenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210554/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3210554/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Morin, Ryan D -- Mendez-Lago, Maria -- Mungall, Andrew J -- Goya, Rodrigo -- Mungall, Karen L -- Corbett, Richard D -- Johnson, Nathalie A -- Severson, Tesa M -- Chiu, Readman -- Field, Matthew -- Jackman, Shaun -- Krzywinski, Martin -- Scott, David W -- Trinh, Diane L -- Tamura-Wells, Jessica -- Li, Sa -- Firme, Marlo R -- Rogic, Sanja -- Griffith, Malachi -- Chan, Susanna -- Yakovenko, Oleksandr -- Meyer, Irmtraud M -- Zhao, Eric Y -- Smailus, Duane -- Moksa, Michelle -- Chittaranjan, Suganthi -- Rimsza, Lisa -- Brooks-Wilson, Angela -- Spinelli, John J -- Ben-Neriah, Susana -- Meissner, Barbara -- Woolcock, Bruce -- Boyle, Merrill -- McDonald, Helen -- Tam, Angela -- Zhao, Yongjun -- Delaney, Allen -- Zeng, Thomas -- Tse, Kane -- Butterfield, Yaron -- Birol, Inanc -- Holt, Rob -- Schein, Jacqueline -- Horsman, Douglas E -- Moore, Richard -- Jones, Steven J M -- Connors, Joseph M -- Hirst, Martin -- Gascoyne, Randy D -- Marra, Marco A -- 1U01CA114778/CA/NCI NIH HHS/ -- HHSN261200800001E/PHS HHS/ -- P50CA130805-01/CA/NCI NIH HHS/ -- TGT-53912/Canadian Institutes of Health Research/Canada -- U24 CA143866/CA/NCI NIH HHS/ -- U24 CA143866-01/CA/NCI NIH HHS/ -- U24 CA143866-02/CA/NCI NIH HHS/ -- U24 CA143866-03/CA/NCI NIH HHS/ -- England -- Nature. 2011 Jul 27;476(7360):298-303. doi: 10.1038/nature10351.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia V5Z 1L3, Canada.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21796119" target="_blank"〉PubMed〈/a〉
    Keywords: Chromatin/genetics/metabolism ; DNA-Binding Proteins/genetics/metabolism ; Genome, Human/genetics ; Histone Acetyltransferases/genetics/metabolism ; Histone-Lysine N-Methyltransferase/genetics/metabolism ; Histones/*metabolism ; Humans ; Loss of Heterozygosity/genetics ; Lymphoma, Follicular/enzymology/genetics ; Lymphoma, Large B-Cell, Diffuse/enzymology/genetics ; Lymphoma, Non-Hodgkin/enzymology/*genetics ; MADS Domain Proteins/genetics/metabolism ; MEF2 Transcription Factors ; Mutation/*genetics ; Myogenic Regulatory Factors/genetics/metabolism ; Neoplasm Proteins/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-04-13
    Description: Multiple studies have confirmed the contribution of rare de novo copy number variations to the risk for autism spectrum disorders. But whereas de novo single nucleotide variants have been identified in affected individuals, their contribution to risk has yet to be clarified. Specifically, the frequency and distribution of these mutations have not been well characterized in matched unaffected controls, and such data are vital to the interpretation of de novo coding mutations observed in probands. Here we show, using whole-exome sequencing of 928 individuals, including 200 phenotypically discordant sibling pairs, that highly disruptive (nonsense and splice-site) de novo mutations in brain-expressed genes are associated with autism spectrum disorders and carry large effects. On the basis of mutation rates in unaffected individuals, we demonstrate that multiple independent de novo single nucleotide variants in the same gene among unrelated probands reliably identifies risk alleles, providing a clear path forward for gene discovery. Among a total of 279 identified de novo coding mutations, there is a single instance in probands, and none in siblings, in which two independent nonsense variants disrupt the same gene, SCN2A (sodium channel, voltage-gated, type II, alpha subunit), a result that is highly unlikely by chance.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667984/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3667984/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sanders, Stephan J -- Murtha, Michael T -- Gupta, Abha R -- Murdoch, John D -- Raubeson, Melanie J -- Willsey, A Jeremy -- Ercan-Sencicek, A Gulhan -- DiLullo, Nicholas M -- Parikshak, Neelroop N -- Stein, Jason L -- Walker, Michael F -- Ober, Gordon T -- Teran, Nicole A -- Song, Youeun -- El-Fishawy, Paul -- Murtha, Ryan C -- Choi, Murim -- Overton, John D -- Bjornson, Robert D -- Carriero, Nicholas J -- Meyer, Kyle A -- Bilguvar, Kaya -- Mane, Shrikant M -- Sestan, Nenad -- Lifton, Richard P -- Gunel, Murat -- Roeder, Kathryn -- Geschwind, Daniel H -- Devlin, Bernie -- State, Matthew W -- K08 MH087639/MH/NIMH NIH HHS/ -- R25 MH077823/MH/NIMH NIH HHS/ -- T32 GM008042/GM/NIGMS NIH HHS/ -- U01 MH081896/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Apr 4;485(7397):237-41. doi: 10.1038/nature10945.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Program on Neurogenetics, Child Study Center, Department of Psychiatry, Yale University School of Medicine, 230 South Frontage Road, New Haven, Connecticut 06520, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22495306" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Autistic Disorder/*genetics ; Codon, Nonsense/genetics ; Exome/*genetics ; Exons/*genetics ; Genetic Heterogeneity ; Genetic Predisposition to Disease/*genetics ; Humans ; Mutation/*genetics ; NAV1.2 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins/*genetics ; RNA Splice Sites/genetics ; Siblings ; Sodium Channels/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-04-13
    Description: Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time-to our knowledge-in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863681/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3863681/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Shah, Sohrab P -- Roth, Andrew -- Goya, Rodrigo -- Oloumi, Arusha -- Ha, Gavin -- Zhao, Yongjun -- Turashvili, Gulisa -- Ding, Jiarui -- Tse, Kane -- Haffari, Gholamreza -- Bashashati, Ali -- Prentice, Leah M -- Khattra, Jaswinder -- Burleigh, Angela -- Yap, Damian -- Bernard, Virginie -- McPherson, Andrew -- Shumansky, Karey -- Crisan, Anamaria -- Giuliany, Ryan -- Heravi-Moussavi, Alireza -- Rosner, Jamie -- Lai, Daniel -- Birol, Inanc -- Varhol, Richard -- Tam, Angela -- Dhalla, Noreen -- Zeng, Thomas -- Ma, Kevin -- Chan, Simon K -- Griffith, Malachi -- Moradian, Annie -- Cheng, S-W Grace -- Morin, Gregg B -- Watson, Peter -- Gelmon, Karen -- Chia, Stephen -- Chin, Suet-Feung -- Curtis, Christina -- Rueda, Oscar M -- Pharoah, Paul D -- Damaraju, Sambasivarao -- Mackey, John -- Hoon, Kelly -- Harkins, Timothy -- Tadigotla, Vasisht -- Sigaroudinia, Mahvash -- Gascard, Philippe -- Tlsty, Thea -- Costello, Joseph F -- Meyer, Irmtraud M -- Eaves, Connie J -- Wasserman, Wyeth W -- Jones, Steven -- Huntsman, David -- Hirst, Martin -- Caldas, Carlos -- Marra, Marco A -- Aparicio, Samuel -- 5U01ES017154-02/ES/NIEHS NIH HHS/ -- R01 GM084875/GM/NIGMS NIH HHS/ -- R01GM084875/GM/NIGMS NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2012 Apr 4;486(7403):395-9. doi: 10.1038/nature10933.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada. sshah@bccrc.ca〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22495314" target="_blank"〉PubMed〈/a〉
    Keywords: Alleles ; Breast Neoplasms/diagnosis/*genetics/*pathology ; Clone Cells/metabolism/pathology ; DNA Copy Number Variations/genetics ; DNA Mutational Analysis ; Disease Progression ; *Evolution, Molecular ; Female ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic/genetics ; Genotype ; High-Throughput Nucleotide Sequencing ; Humans ; INDEL Mutation/genetics ; Mutation/*genetics ; Point Mutation/genetics ; Precision Medicine ; Reproducibility of Results ; Sequence Analysis, RNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-05-24
    Description: Traditional culture-based methods have incompletely defined the microbial landscape of common recalcitrant human fungal skin diseases, including athlete's foot and toenail infections. Skin protects humans from invasion by pathogenic microorganisms and provides a home for diverse commensal microbiota. Bacterial genomic sequence data have generated novel hypotheses about species and community structures underlying human disorders. However, microbial diversity is not limited to bacteria; microorganisms such as fungi also have major roles in microbial community stability, human health and disease. Genomic methodologies to identify fungal species and communities have been limited compared with those that are available for bacteria. Fungal evolution can be reconstructed with phylogenetic markers, including ribosomal RNA gene regions and other highly conserved genes. Here we sequenced and analysed fungal communities of 14 skin sites in 10 healthy adults. Eleven core-body and arm sites were dominated by fungi of the genus Malassezia, with only species-level classifications revealing fungal-community composition differences between sites. By contrast, three foot sites--plantar heel, toenail and toe web--showed high fungal diversity. Concurrent analysis of bacterial and fungal communities demonstrated that physiologic attributes and topography of skin differentially shape these two microbial communities. These results provide a framework for future investigation of the contribution of interactions between pathogenic and commensal fungal and bacterial communities to the maintainenace of human health and to disease pathogenesis.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711185/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3711185/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Findley, Keisha -- Oh, Julia -- Yang, Joy -- Conlan, Sean -- Deming, Clayton -- Meyer, Jennifer A -- Schoenfeld, Deborah -- Nomicos, Effie -- Park, Morgan -- NIH Intramural Sequencing Center Comparative Sequencing Program -- Kong, Heidi H -- Segre, Julia A -- 1K99AR059222/AR/NIAMS NIH HHS/ -- 1UH2AR057504-01/AR/NIAMS NIH HHS/ -- 4UH3AR057504-02/AR/NIAMS NIH HHS/ -- ZIA BC010938-05/Intramural NIH HHS/ -- ZIA HG000180-12/Intramural NIH HHS/ -- England -- Nature. 2013 Jun 20;498(7454):367-70. doi: 10.1038/nature12171. Epub 2013 May 22.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23698366" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Bacteria/classification/genetics/*isolation & purification ; *Biodiversity ; Databases, Genetic ; District of Columbia ; Female ; Fungi/classification/genetics/*isolation & purification ; Health ; Homeostasis ; Humans ; Malassezia/classification/genetics/isolation & purification ; Male ; Molecular Sequence Data ; Skin/anatomy & histology/*microbiology ; Young Adult
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...