ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-08-06
    Description: Plasma concentrations of total cholesterol, low-density lipoprotein cholesterol, high-density lipoprotein cholesterol and triglycerides are among the most important risk factors for coronary artery disease (CAD) and are targets for therapeutic intervention. We screened the genome for common variants associated with plasma lipids in 〉100,000 individuals of European ancestry. Here we report 95 significantly associated loci (P 〈 5 x 10(-8)), with 59 showing genome-wide significant association with lipid traits for the first time. The newly reported associations include single nucleotide polymorphisms (SNPs) near known lipid regulators (for example, CYP7A1, NPC1L1 and SCARB1) as well as in scores of loci not previously implicated in lipoprotein metabolism. The 95 loci contribute not only to normal variation in lipid traits but also to extreme lipid phenotypes and have an impact on lipid traits in three non-European populations (East Asians, South Asians and African Americans). Our results identify several novel loci associated with plasma lipids that are also associated with CAD. Finally, we validated three of the novel genes-GALNT2, PPP1R3B and TTC39B-with experiments in mouse models. Taken together, our findings provide the foundation to develop a broader biological understanding of lipoprotein metabolism and to identify new therapeutic opportunities for the prevention of CAD.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039276/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039276/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Teslovich, Tanya M -- Musunuru, Kiran -- Smith, Albert V -- Edmondson, Andrew C -- Stylianou, Ioannis M -- Koseki, Masahiro -- Pirruccello, James P -- Ripatti, Samuli -- Chasman, Daniel I -- Willer, Cristen J -- Johansen, Christopher T -- Fouchier, Sigrid W -- Isaacs, Aaron -- Peloso, Gina M -- Barbalic, Maja -- Ricketts, Sally L -- Bis, Joshua C -- Aulchenko, Yurii S -- Thorleifsson, Gudmar -- Feitosa, Mary F -- Chambers, John -- Orho-Melander, Marju -- Melander, Olle -- Johnson, Toby -- Li, Xiaohui -- Guo, Xiuqing -- Li, Mingyao -- Shin Cho, Yoon -- Jin Go, Min -- Jin Kim, Young -- Lee, Jong-Young -- Park, Taesung -- Kim, Kyunga -- Sim, Xueling -- Twee-Hee Ong, Rick -- Croteau-Chonka, Damien C -- Lange, Leslie A -- Smith, Joshua D -- Song, Kijoung -- Hua Zhao, Jing -- Yuan, Xin -- Luan, Jian'an -- Lamina, Claudia -- Ziegler, Andreas -- Zhang, Weihua -- Zee, Robert Y L -- Wright, Alan F -- Witteman, Jacqueline C M -- Wilson, James F -- Willemsen, Gonneke -- Wichmann, H-Erich -- Whitfield, John B -- Waterworth, Dawn M -- Wareham, Nicholas J -- Waeber, Gerard -- Vollenweider, Peter -- Voight, Benjamin F -- Vitart, Veronique -- Uitterlinden, Andre G -- Uda, Manuela -- Tuomilehto, Jaakko -- Thompson, John R -- Tanaka, Toshiko -- Surakka, Ida -- Stringham, Heather M -- Spector, Tim D -- Soranzo, Nicole -- Smit, Johannes H -- Sinisalo, Juha -- Silander, Kaisa -- Sijbrands, Eric J G -- Scuteri, Angelo -- Scott, James -- Schlessinger, David -- Sanna, Serena -- Salomaa, Veikko -- Saharinen, Juha -- Sabatti, Chiara -- Ruokonen, Aimo -- Rudan, Igor -- Rose, Lynda M -- Roberts, Robert -- Rieder, Mark -- Psaty, Bruce M -- Pramstaller, Peter P -- Pichler, Irene -- Perola, Markus -- Penninx, Brenda W J H -- Pedersen, Nancy L -- Pattaro, Cristian -- Parker, Alex N -- Pare, Guillaume -- Oostra, Ben A -- O'Donnell, Christopher J -- Nieminen, Markku S -- Nickerson, Deborah A -- Montgomery, Grant W -- Meitinger, Thomas -- McPherson, Ruth -- McCarthy, Mark I -- McArdle, Wendy -- Masson, David -- Martin, Nicholas G -- Marroni, Fabio -- Mangino, Massimo -- Magnusson, Patrik K E -- Lucas, Gavin -- Luben, Robert -- Loos, Ruth J F -- Lokki, Marja-Liisa -- Lettre, Guillaume -- Langenberg, Claudia -- Launer, Lenore J -- Lakatta, Edward G -- Laaksonen, Reijo -- Kyvik, Kirsten O -- Kronenberg, Florian -- Konig, Inke R -- Khaw, Kay-Tee -- Kaprio, Jaakko -- Kaplan, Lee M -- Johansson, Asa -- Jarvelin, Marjo-Riitta -- Janssens, A Cecile J W -- Ingelsson, Erik -- Igl, Wilmar -- Kees Hovingh, G -- Hottenga, Jouke-Jan -- Hofman, Albert -- Hicks, Andrew A -- Hengstenberg, Christian -- Heid, Iris M -- Hayward, Caroline -- Havulinna, Aki S -- Hastie, Nicholas D -- Harris, Tamara B -- Haritunians, Talin -- Hall, Alistair S -- Gyllensten, Ulf -- Guiducci, Candace -- Groop, Leif C -- Gonzalez, Elena -- Gieger, Christian -- Freimer, Nelson B -- Ferrucci, Luigi -- Erdmann, Jeanette -- Elliott, Paul -- Ejebe, Kenechi G -- Doring, Angela -- Dominiczak, Anna F -- Demissie, Serkalem -- Deloukas, Panagiotis -- de Geus, Eco J C -- de Faire, Ulf -- Crawford, Gabriel -- Collins, Francis S -- Chen, Yii-der I -- Caulfield, Mark J -- Campbell, Harry -- Burtt, Noel P -- Bonnycastle, Lori L -- Boomsma, Dorret I -- Boekholdt, S Matthijs -- Bergman, Richard N -- Barroso, Ines -- Bandinelli, Stefania -- Ballantyne, Christie M -- Assimes, Themistocles L -- Quertermous, Thomas -- Altshuler, David -- Seielstad, Mark -- Wong, Tien Y -- Tai, E-Shyong -- Feranil, Alan B -- Kuzawa, Christopher W -- Adair, Linda S -- Taylor, Herman A Jr -- Borecki, Ingrid B -- Gabriel, Stacey B -- Wilson, James G -- Holm, Hilma -- Thorsteinsdottir, Unnur -- Gudnason, Vilmundur -- Krauss, Ronald M -- Mohlke, Karen L -- Ordovas, Jose M -- Munroe, Patricia B -- Kooner, Jaspal S -- Tall, Alan R -- Hegele, Robert A -- Kastelein, John J P -- Schadt, Eric E -- Rotter, Jerome I -- Boerwinkle, Eric -- Strachan, David P -- Mooser, Vincent -- Stefansson, Kari -- Reilly, Muredach P -- Samani, Nilesh J -- Schunkert, Heribert -- Cupples, L Adrienne -- Sandhu, Manjinder S -- Ridker, Paul M -- Rader, Daniel J -- van Duijn, Cornelia M -- Peltonen, Leena -- Abecasis, Goncalo R -- Boehnke, Michael -- Kathiresan, Sekar -- 068545/Z/02/Wellcome Trust/United Kingdom -- 076113/B/04/Z/Wellcome Trust/United Kingdom -- 077016/Z/05/Z/Wellcome Trust/United Kingdom -- 079895/Wellcome Trust/United Kingdom -- 1Z01 HG000024/HG/NHGRI NIH HHS/ -- 5R01DK06833603/DK/NIDDK NIH HHS/ -- 5R01DK07568102/DK/NIDDK NIH HHS/ -- 5R01HL087679-02/HL/NHLBI NIH HHS/ -- 5R01HL08770003/HL/NHLBI NIH HHS/ -- 5R01HL08821502/HL/NHLBI NIH HHS/ -- CA 047988/CA/NCI NIH HHS/ -- CZB/4/710/Chief Scientist Office/United Kingdom -- DK062370/DK/NIDDK NIH HHS/ -- DK063491/DK/NIDDK NIH HHS/ -- DK072193/DK/NIDDK NIH HHS/ -- DK078150/DK/NIDDK NIH HHS/ -- DK56350/DK/NIDDK NIH HHS/ -- ES10126/ES/NIEHS NIH HHS/ -- G0000934/Medical Research Council/United Kingdom -- G0401527/Medical Research Council/United Kingdom -- G0601966/Medical Research Council/United Kingdom -- G0700931/Medical Research Council/United Kingdom -- G0701863/Medical Research Council/United Kingdom -- G0801056/Medical Research Council/United Kingdom -- G0801566/Medical Research Council/United Kingdom -- G9521010/Medical Research Council/United Kingdom -- G9521010D/Medical Research Council/United Kingdom -- HHSN268200625226C/PHS HHS/ -- HL 04381/HL/NHLBI NIH HHS/ -- HL 080467/HL/NHLBI NIH HHS/ -- HL-54776/HL/NHLBI NIH HHS/ -- HL085144/HL/NHLBI NIH HHS/ -- K99 HL098364/HL/NHLBI NIH HHS/ -- K99 HL098364-01/HL/NHLBI NIH HHS/ -- K99HL094535/HL/NHLBI NIH HHS/ -- M01-RR00425/RR/NCRR NIH HHS/ -- MC_QA137934/Medical Research Council/United Kingdom -- MC_U106179471/Medical Research Council/United Kingdom -- MC_U106188470/Medical Research Council/United Kingdom -- MC_U127561128/Medical Research Council/United Kingdom -- N01 HC-15103/HC/NHLBI NIH HHS/ -- N01 HC-55222/HC/NHLBI NIH HHS/ -- N01-AG-12100/AG/NIA NIH HHS/ -- N01-HC-25195/HC/NHLBI NIH HHS/ -- N01-HC-35129/HC/NHLBI NIH HHS/ -- N01-HC-45133/HC/NHLBI NIH HHS/ -- N01-HC-55015/HC/NHLBI NIH HHS/ -- N01-HC-55016/HC/NHLBI NIH HHS/ -- N01-HC-55018/HC/NHLBI NIH HHS/ -- N01-HC-55019/HC/NHLBI NIH HHS/ -- N01-HC-55020/HC/NHLBI NIH HHS/ -- N01-HC-55021/HC/NHLBI NIH HHS/ -- N01-HC-55022/HC/NHLBI NIH HHS/ -- N01-HC-75150/HC/NHLBI NIH HHS/ -- N01-HC-85079/HC/NHLBI NIH HHS/ -- N01-HC-85080/HC/NHLBI NIH HHS/ -- N01-HC-85081/HC/NHLBI NIH HHS/ -- N01-HC-85082/HC/NHLBI NIH HHS/ -- N01-HC-85083/HC/NHLBI NIH HHS/ -- N01-HC-85084/HC/NHLBI NIH HHS/ -- N01-HC-85085/HC/NHLBI NIH HHS/ -- N01-HC-85086/HC/NHLBI NIH HHS/ -- N01-HG-65403/HG/NHGRI NIH HHS/ -- N02-HL-6-4278/HL/NHLBI NIH HHS/ -- PG/02/128/British Heart Foundation/United Kingdom -- PG/08/094/British Heart Foundation/United Kingdom -- PG/08/094/26019/British Heart Foundation/United Kingdom -- R01 DK072193/DK/NIDDK NIH HHS/ -- R01 DK078150/DK/NIDDK NIH HHS/ -- R01 HL087647/HL/NHLBI NIH HHS/ -- R01 HL087676/HL/NHLBI NIH HHS/ -- R01 HL089650/HL/NHLBI NIH HHS/ -- R01HL086694/HL/NHLBI NIH HHS/ -- R01HL087641/HL/NHLBI NIH HHS/ -- R01HL087652/HL/NHLBI NIH HHS/ -- R01HL59367/HL/NHLBI NIH HHS/ -- R24 HD050924/HD/NICHD NIH HHS/ -- RC1 HL099634/HL/NHLBI NIH HHS/ -- RC1 HL099634-02/HL/NHLBI NIH HHS/ -- RC1 HL099793/HL/NHLBI NIH HHS/ -- RC2 HL101864,/HL/NHLBI NIH HHS/ -- RC2 HL102419/HL/NHLBI NIH HHS/ -- RG/07/005/23633/British Heart Foundation/United Kingdom -- RR20649/RR/NCRR NIH HHS/ -- SP/08/005/25115/British Heart Foundation/United Kingdom -- T32 GM007092/GM/NIGMS NIH HHS/ -- T32 HG00040/HG/NHGRI NIH HHS/ -- T32HL007208/HL/NHLBI NIH HHS/ -- TW05596/TW/FIC NIH HHS/ -- U01 DK062370/DK/NIDDK NIH HHS/ -- U01 DK062418/DK/NIDDK NIH HHS/ -- U01 HL069757/HL/NHLBI NIH HHS/ -- U01 HL080295/HL/NHLBI NIH HHS/ -- U01HG004402/HG/NHGRI NIH HHS/ -- U54 RR020278/RR/NCRR NIH HHS/ -- UL1RR025005/RR/NCRR NIH HHS/ -- Intramural NIH HHS/ -- England -- Nature. 2010 Aug 5;466(7307):707-13. doi: 10.1038/nature09270.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Statistical Genetics, Department of Biostatistics, University of Michigan, Ann Arbor, Michigan 48109, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20686565" target="_blank"〉PubMed〈/a〉
    Keywords: African Americans/genetics ; Animals ; Asian Continental Ancestry Group/genetics ; Cholesterol, HDL/blood ; Cholesterol, LDL/blood ; Coronary Artery Disease/blood/genetics/therapy ; Europe/ethnology ; European Continental Ancestry Group/genetics ; Female ; Genetic Loci/*genetics ; *Genome-Wide Association Study ; Genotype ; Humans ; Lipid Metabolism/*genetics ; Lipids/*blood ; Liver/metabolism ; Male ; Mice ; N-Acetylgalactosaminyltransferases/genetics/metabolism ; Phenotype ; Polymorphism, Single Nucleotide/genetics ; Protein Phosphatase 1/genetics/metabolism ; Reproducibility of Results ; Triglycerides/blood
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1991-08-16
    Description: The expression of the V(D)J [variable (diversity) joining elements] recombination activating genes, RAG-1 and RAG-2, has been examined during T cell development in the thymus. In situ hybridization to intact thymus and RNA blot analysis of isolated thymic subpopulations separated on the basis of T cell receptor (TCR) expression demonstrated that both TCR- and TCR+ cortical thymocytes express RAG-1 and RAG-2 messenger RNA's. Within the TCR+ population, RAG expression was observed in immature CD4+CD8+ (double positive) cells, but not in the more mature CD4+CD8- or CD4-CD8+ (single positive) subpopulations. Thus, although cortical thymocytes that bear TCR on their surface continue to express RAG-1 and RAG-2, it appears that the expression of both genes is normally terminated during subsequent thymic maturation. Since thymocyte maturation in vivo is thought to be regulated through the interaction of the TCR complex with self major histocompatibility complex (MHC) antigens, these data suggest that signals transduced by the TCR complex might result in the termination of RAG expression. Consistent with this hypothesis, thymocyte TCR cross-linking in vitro led to rapid termination of RAG-1 and RAG-2 expression, whereas cross-linking of other T cell surface antigens such as CD4, CD8, or HLA class I had no effect.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Turka, L A -- Schatz, D G -- Oettinger, M A -- Chun, J J -- Gorka, C -- Lee, K -- McCormack, W T -- Thompson, C B -- DK-01899/DK/NIDDK NIH HHS/ -- New York, N.Y. -- Science. 1991 Aug 16;253(5021):778-81.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Internal Medicine, University of Michigan, Ann Arbor 48109.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1831564" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, CD/physiology ; Antigens, CD3 ; Antigens, Differentiation, T-Lymphocyte/physiology ; Cell Differentiation ; Cell Survival ; DNA Nucleotidyltransferases/*genetics ; *DNA-Binding Proteins ; Gene Expression ; *Gene Rearrangement, T-Lymphocyte ; *Homeodomain Proteins ; Humans ; Mice ; Nuclear Proteins ; Nucleic Acid Hybridization ; Proteins/*genetics ; RNA, Messenger/genetics ; Receptor Aggregation ; Receptors, Antigen, T-Cell/*physiology ; Receptors, Interleukin-2/genetics ; T-Lymphocyte Subsets/enzymology/*physiology ; Thymus Gland/cytology/*enzymology ; VDJ Recombinases
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-07-22
    Description: The mammalian adenosine monophosphate-activated protein kinase (AMPK) is a serine-threonine kinase protein complex that is a central regulator of cellular energy homeostasis. However, the mechanisms by which AMPK mediates cellular responses to metabolic stress remain unclear. We found that AMPK activates transcription through direct association with chromatin and phosphorylation of histone H2B at serine 36. AMPK recruitment and H2B Ser36 phosphorylation colocalized within genes activated by AMPK-dependent pathways, both in promoters and in transcribed regions. Ectopic expression of H2B in which Ser36 was substituted by alanine reduced transcription and RNA polymerase II association to AMPK-dependent genes, and lowered cell survival in response to stress. Our results place AMPK-dependent H2B Ser36 phosphorylation in a direct transcriptional and chromatin regulatory pathway leading to cellular adaptation to stress.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3922052/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bungard, David -- Fuerth, Benjamin J -- Zeng, Ping-Yao -- Faubert, Brandon -- Maas, Nancy L -- Viollet, Benoit -- Carling, David -- Thompson, Craig B -- Jones, Russell G -- Berger, Shelley L -- CA078831/CA/NCI NIH HHS/ -- CA09171/CA/NCI NIH HHS/ -- CA105463/CA/NCI NIH HHS/ -- MC_U120027537/Medical Research Council/United Kingdom -- MOP-93799/Canadian Institutes of Health Research/Canada -- P01 AG031862/AG/NIA NIH HHS/ -- P01 CA104838/CA/NCI NIH HHS/ -- R01 CA078831/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2010 Sep 3;329(5996):1201-5. doi: 10.1126/science.1191241. Epub 2010 Jul 15.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cellular and Developmental Biology, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20647423" target="_blank"〉PubMed〈/a〉
    Keywords: AMP-Activated Protein Kinases/chemistry/*metabolism ; Adaptation, Physiological ; Amino Acid Motifs ; Amino Acid Substitution ; Animals ; Cell Line ; Cell Line, Tumor ; Cell Survival ; Cells, Cultured ; Chromatin/*metabolism ; Chromatin Immunoprecipitation ; Enzyme Activation ; Gene Expression Regulation ; Histones/chemistry/*metabolism ; Humans ; Mice ; Phosphorylation ; Promoter Regions, Genetic ; Protein-Serine-Threonine Kinases/genetics/metabolism ; Serine/metabolism ; Signal Transduction ; *Stress, Physiological ; *Transcription, Genetic ; Tumor Suppressor Protein p53/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2010-12-15
    Description: Medulloblastoma encompasses a collection of clinically and molecularly diverse tumour subtypes that together comprise the most common malignant childhood brain tumour. These tumours are thought to arise within the cerebellum, with approximately 25% originating from granule neuron precursor cells (GNPCs) after aberrant activation of the Sonic Hedgehog pathway (hereafter, SHH subtype). The pathological processes that drive heterogeneity among the other medulloblastoma subtypes are not known, hindering the development of much needed new therapies. Here we provide evidence that a discrete subtype of medulloblastoma that contains activating mutations in the WNT pathway effector CTNNB1 (hereafter, WNT subtype) arises outside the cerebellum from cells of the dorsal brainstem. We found that genes marking human WNT-subtype medulloblastomas are more frequently expressed in the lower rhombic lip (LRL) and embryonic dorsal brainstem than in the upper rhombic lip (URL) and developing cerebellum. Magnetic resonance imaging (MRI) and intra-operative reports showed that human WNT-subtype tumours infiltrate the dorsal brainstem, whereas SHH-subtype tumours are located within the cerebellar hemispheres. Activating mutations in Ctnnb1 had little impact on progenitor cell populations in the cerebellum, but caused the abnormal accumulation of cells on the embryonic dorsal brainstem which included aberrantly proliferating Zic1(+) precursor cells. These lesions persisted in all mutant adult mice; moreover, in 15% of cases in which Tp53 was concurrently deleted, they progressed to form medulloblastomas that recapitulated the anatomy and gene expression profiles of human WNT-subtype medulloblastoma. We provide the first evidence, to our knowledge, that subtypes of medulloblastoma have distinct cellular origins. Our data provide an explanation for the marked molecular and clinical differences between SHH- and WNT-subtype medulloblastomas and have profound implications for future research and treatment of this important childhood cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059767/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059767/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Gibson, Paul -- Tong, Yiai -- Robinson, Giles -- Thompson, Margaret C -- Currle, D Spencer -- Eden, Christopher -- Kranenburg, Tanya A -- Hogg, Twala -- Poppleton, Helen -- Martin, Julie -- Finkelstein, David -- Pounds, Stanley -- Weiss, Aaron -- Patay, Zoltan -- Scoggins, Matthew -- Ogg, Robert -- Pei, Yanxin -- Yang, Zeng-Jie -- Brun, Sonja -- Lee, Youngsoo -- Zindy, Frederique -- Lindsey, Janet C -- Taketo, Makoto M -- Boop, Frederick A -- Sanford, Robert A -- Gajjar, Amar -- Clifford, Steven C -- Roussel, Martine F -- McKinnon, Peter J -- Gutmann, David H -- Ellison, David W -- Wechsler-Reya, Robert -- Gilbertson, Richard J -- 01CA96832/CA/NCI NIH HHS/ -- P01 CA096832/CA/NCI NIH HHS/ -- P01 CA096832-06A18120/CA/NCI NIH HHS/ -- P01 CA096832-078120/CA/NCI NIH HHS/ -- P30CA021765/CA/NCI NIH HHS/ -- R01 CA129541/CA/NCI NIH HHS/ -- R01 CA129541-01/CA/NCI NIH HHS/ -- R01 CA129541-02/CA/NCI NIH HHS/ -- R01 CA129541-03/CA/NCI NIH HHS/ -- R01 CA129541-04/CA/NCI NIH HHS/ -- R01 CA129541-05/CA/NCI NIH HHS/ -- R01 NS037956/NS/NINDS NIH HHS/ -- R01 NS037956-13/NS/NINDS NIH HHS/ -- R01CA129541/CA/NCI NIH HHS/ -- England -- Nature. 2010 Dec 23;468(7327):1095-9. doi: 10.1038/nature09587. Epub 2010 Dec 8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Neurobiology, St Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21150899" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain Stem/*pathology ; Cerebellar Neoplasms/*pathology ; Disease Models, Animal ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic ; Humans ; Medulloblastoma/*pathology ; Mice ; Mice, Transgenic ; Mutation ; beta Catenin/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-07-06
    Description: During progression of atherosclerosis, myeloid cells destabilize lipid-rich plaques in the arterial wall and cause their rupture, thus triggering myocardial infarction and stroke. Survivors of acute coronary syndromes have a high risk of recurrent events for unknown reasons. Here we show that the systemic response to ischaemic injury aggravates chronic atherosclerosis. After myocardial infarction or stroke, Apoe-/- mice developed larger atherosclerotic lesions with a more advanced morphology. This disease acceleration persisted over many weeks and was associated with markedly increased monocyte recruitment. Seeking the source of surplus monocytes in plaques, we found that myocardial infarction liberated haematopoietic stem and progenitor cells from bone marrow niches via sympathetic nervous system signalling. The progenitors then seeded the spleen, yielding a sustained boost in monocyte production. These observations provide new mechanistic insight into atherogenesis and provide a novel therapeutic opportunity to mitigate disease progression.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401326/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3401326/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dutta, Partha -- Courties, Gabriel -- Wei, Ying -- Leuschner, Florian -- Gorbatov, Rostic -- Robbins, Clinton S -- Iwamoto, Yoshiko -- Thompson, Brian -- Carlson, Alicia L -- Heidt, Timo -- Majmudar, Maulik D -- Lasitschka, Felix -- Etzrodt, Martin -- Waterman, Peter -- Waring, Michael T -- Chicoine, Adam T -- van der Laan, Anja M -- Niessen, Hans W M -- Piek, Jan J -- Rubin, Barry B -- Butany, Jagdish -- Stone, James R -- Katus, Hugo A -- Murphy, Sabina A -- Morrow, David A -- Sabatine, Marc S -- Vinegoni, Claudio -- Moskowitz, Michael A -- Pittet, Mikael J -- Libby, Peter -- Lin, Charles P -- Swirski, Filip K -- Weissleder, Ralph -- Nahrendorf, Matthias -- P50-CA086355/CA/NCI NIH HHS/ -- R01 AI084880/AI/NIAID NIH HHS/ -- R01 EB006432/EB/NIBIB NIH HHS/ -- R01 HL095612/HL/NHLBI NIH HHS/ -- R01 HL095629/HL/NHLBI NIH HHS/ -- R01 HL096576/HL/NHLBI NIH HHS/ -- R01-EB006432/EB/NIBIB NIH HHS/ -- R01-HL095629/HL/NHLBI NIH HHS/ -- R01-HL096576/HL/NHLBI NIH HHS/ -- T32 CA079443/CA/NCI NIH HHS/ -- T32-CA79443/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Jul 19;487(7407):325-9. doi: 10.1038/nature11260.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22763456" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Apolipoproteins E/genetics ; Atherosclerosis/*etiology/*pathology ; Hematopoietic Stem Cells/cytology ; Inflammation/complications ; Mice ; Mice, Inbred C57BL ; Monocytes/cytology ; Myocardial Infarction/*complications/*pathology ; Spleen/cytology ; Stem Cells/cytology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-11-26
    Description: To achieve its precise neural connectivity, the developing mammalian nervous system undergoes extensive activity-dependent synapse remodelling. Recently, microglial cells have been shown to be responsible for a portion of synaptic pruning, but the remaining mechanisms remain unknown. Here we report a new role for astrocytes in actively engulfing central nervous system synapses. This process helps to mediate synapse elimination, requires the MEGF10 and MERTK phagocytic pathways, and is strongly dependent on neuronal activity. Developing mice deficient in both astrocyte pathways fail to refine their retinogeniculate connections normally and retain excess functional synapses. Finally, we show that in the adult mouse brain, astrocytes continuously engulf both excitatory and inhibitory synapses. These studies reveal a novel role for astrocytes in mediating synapse elimination in the developing and adult brain, identify MEGF10 and MERTK as critical proteins in the synapse remodelling underlying neural circuit refinement, and have important implications for understanding learning and memory as well as neurological disease processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969024/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3969024/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chung, Won-Suk -- Clarke, Laura E -- Wang, Gordon X -- Stafford, Benjamin K -- Sher, Alexander -- Chakraborty, Chandrani -- Joung, Julia -- Foo, Lynette C -- Thompson, Andrew -- Chen, Chinfei -- Smith, Stephen J -- Barres, Ben A -- 5 R21NS072556/NS/NINDS NIH HHS/ -- NS069375/NS/NINDS NIH HHS/ -- P30 HD018655/HD/NICHD NIH HHS/ -- R01 EY013613/EY/NEI NIH HHS/ -- R01 NS075252/NS/NINDS NIH HHS/ -- R21 NS072556/NS/NINDS NIH HHS/ -- T32 MH020016/MH/NIMH NIH HHS/ -- England -- Nature. 2013 Dec 19;504(7480):394-400. doi: 10.1038/nature12776. Epub 2013 Nov 24.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Neurobiology, Stanford University, School of Medicine, Stanford, California 94305, USA. ; 1] Department of Neurobiology, Stanford University, School of Medicine, Stanford, California 94305, USA [2]. ; 1] Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, Stanford, California 94305, USA [2]. ; Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA. ; Santa Cruz Institute of Particle Physic and Department of Physics, University of California, Santa Cruz, California 95064, USA. ; Institute of Molecular and Cell Biology, A *Star, 61 Biopolis Drive, Proteos Building, 138673 Singapore. ; Children's Hospital, Harvard Medical School, 300 Longwood Avenue, CLS12250, Boston, Massachusetts 02115, USA. ; Department of Molecular and Cellular Physiology, Stanford University, School of Medicine, Stanford, California 94305, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24270812" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Astrocytes/cytology/*metabolism ; Brain/cytology ; In Vitro Techniques ; Lateral Thalamic Nuclei/cytology/metabolism ; Learning/physiology ; Membrane Proteins/deficiency/genetics/*metabolism ; Mice ; Mice, Transgenic ; Neural Pathways/cytology/*metabolism ; *Phagocytosis ; Proto-Oncogene Proteins/deficiency/genetics/*metabolism ; Receptor Protein-Tyrosine Kinases/deficiency/genetics/*metabolism ; Retina/physiology ; Synapses/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-12-27
    Description: Fundamental questions remain unanswered about the transcriptional networks that control the identity and self-renewal of neural stem cells (NSCs), a specialized subset of astroglial cells that are endowed with stem properties and neurogenic capacity. Here we report that the zinc finger protein Ars2 (arsenite-resistance protein 2; also known as Srrt) is expressed by adult NSCs from the subventricular zone (SVZ) of mice, and that selective knockdown of Ars2 in cells expressing glial fibrillary acidic protein within the adult SVZ depletes the number of NSCs and their neurogenic capacity. These phenotypes are recapitulated in the postnatal SVZ of hGFAP-cre::Ars2(fl/fl) conditional knockout mice, but are more severe. Ex vivo assays show that Ars2 is necessary and sufficient to promote NSC self-renewal, and that it does so by positively regulating the expression of Sox2. Although plant and animal orthologues of Ars2 are known for their conserved roles in microRNA biogenesis, we unexpectedly observed that Ars2 retains its capacity to promote self-renewal in Drosha and Dicer1 knockout NSCs. Instead, chromatin immunoprecipitation revealed that Ars2 binds a specific region within the 6-kilobase NSC enhancer of Sox2. This association is RNA-independent, and the region that is bound is required for Ars2-mediated activation of Sox2. We used gel-shift analysis to refine the Sox2 region bound by Ars2 to a specific conserved DNA sequence. The importance of Sox2 as a critical downstream effector is shown by its ability to restore the self-renewal and multipotency defects of Ars2 knockout NSCs. Our findings reveal Ars2 as a new transcription factor that controls the multipotent progenitor state of NSCs through direct activation of the pluripotency factor Sox2.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261657/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261657/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Andreu-Agullo, Celia -- Maurin, Thomas -- Thompson, Craig B -- Lai, Eric C -- R01 GM083300/GM/NIGMS NIH HHS/ -- R01 GM083300-05/GM/NIGMS NIH HHS/ -- R01-GM083300/GM/NIGMS NIH HHS/ -- England -- Nature. 2011 Dec 25;481(7380):195-8. doi: 10.1038/nature10712.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Avenue, Box 252, New York, New York 10065, USA. andreuac@mskcc.org〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22198669" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Brain/*cytology ; Cell Proliferation ; Cells, Cultured ; Chromatin Immunoprecipitation ; Conserved Sequence/genetics ; DEAD-box RNA Helicases/deficiency ; Electrophoretic Mobility Shift Assay ; Enhancer Elements, Genetic/genetics ; Glial Fibrillary Acidic Protein/metabolism ; Mice ; Mice, Knockout ; Neural Stem Cells/*cytology/*metabolism ; Neurogenesis/genetics ; Nuclear Proteins/chemistry/deficiency/genetics/*metabolism ; Olfactory Bulb/cytology ; Ribonuclease III/deficiency ; SOXB1 Transcription Factors/*genetics ; Transcription Factors/chemistry/deficiency/genetics/*metabolism ; *Transcriptional Activation ; Zinc Fingers
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-22
    Description: Recurrent mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 have been identified in gliomas, acute myeloid leukaemias (AML) and chondrosarcomas, and share a novel enzymatic property of producing 2-hydroxyglutarate (2HG) from alpha-ketoglutarate. Here we report that 2HG-producing IDH mutants can prevent the histone demethylation that is required for lineage-specific progenitor cells to differentiate into terminally differentiated cells. In tumour samples from glioma patients, IDH mutations were associated with a distinct gene expression profile enriched for genes expressed in neural progenitor cells, and this was associated with increased histone methylation. To test whether the ability of IDH mutants to promote histone methylation contributes to a block in cell differentiation in non-transformed cells, we tested the effect of neomorphic IDH mutants on adipocyte differentiation in vitro. Introduction of either mutant IDH or cell-permeable 2HG was associated with repression of the inducible expression of lineage-specific differentiation genes and a block to differentiation. This correlated with a significant increase in repressive histone methylation marks without observable changes in promoter DNA methylation. Gliomas were found to have elevated levels of similar histone repressive marks. Stable transfection of a 2HG-producing mutant IDH into immortalized astrocytes resulted in progressive accumulation of histone methylation. Of the marks examined, increased H3K9 methylation reproducibly preceded a rise in DNA methylation as cells were passaged in culture. Furthermore, we found that the 2HG-inhibitable H3K9 demethylase KDM4C was induced during adipocyte differentiation, and that RNA-interference suppression of KDM4C was sufficient to block differentiation. Together these data demonstrate that 2HG can inhibit histone demethylation and that inhibition of histone demethylation can be sufficient to block the differentiation of non-transformed cells.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478770/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3478770/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lu, Chao -- Ward, Patrick S -- Kapoor, Gurpreet S -- Rohle, Dan -- Turcan, Sevin -- Abdel-Wahab, Omar -- Edwards, Christopher R -- Khanin, Raya -- Figueroa, Maria E -- Melnick, Ari -- Wellen, Kathryn E -- O'Rourke, Donald M -- Berger, Shelley L -- Chan, Timothy A -- Levine, Ross L -- Mellinghoff, Ingo K -- Thompson, Craig B -- R01 CA078831/CA/NCI NIH HHS/ -- R01 CA105463/CA/NCI NIH HHS/ -- U54CA143798/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Feb 15;483(7390):474-8. doi: 10.1038/nature10860.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22343901" target="_blank"〉PubMed〈/a〉
    Keywords: 3T3-L1 Cells ; Adipocytes/cytology/drug effects/metabolism ; Animals ; Astrocytes/cytology/drug effects ; Cell Differentiation/drug effects/*genetics ; Cell Line, Tumor ; Cell Lineage/genetics ; DNA Methylation/drug effects ; Enzyme Induction/drug effects ; Gene Expression Regulation/drug effects ; Glioma/enzymology/genetics/pathology ; Glutarates/metabolism/pharmacology ; HEK293 Cells ; Histones/*metabolism ; Humans ; Isocitrate Dehydrogenase/antagonists & inhibitors/*genetics/metabolism ; Jumonji Domain-Containing Histone Demethylases/antagonists & ; inhibitors/deficiency/genetics/metabolism ; Methylation/drug effects ; Mice ; Mutation/*genetics ; Neural Stem Cells/metabolism ; Promoter Regions, Genetic/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-01-25
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉van Denderen, Bryce J W -- Thompson, Erik W -- England -- Nature. 2013 Jan 24;493(7433):487-8. doi: 10.1038/493487a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23344357" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; *Cell Movement ; *Epithelial-Mesenchymal Transition/drug effects ; Homeodomain Proteins/metabolism ; Humans ; Mice ; Neoplasm Metastasis/drug therapy/*pathology ; Nuclear Proteins/genetics/metabolism ; Phenotype ; Twist Transcription Factor/genetics/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-12-03
    Description: CAAX proteins have essential roles in multiple signalling pathways, controlling processes such as proliferation, differentiation and carcinogenesis. The approximately 120 mammalian CAAX proteins function at cellular membranes and include the Ras superfamily of small GTPases, nuclear lamins, the gamma-subunit of heterotrimeric GTPases, and several protein kinases and phosphatases. The proper localization of CAAX proteins to cell membranes is orchestrated by a series of post-translational modifications of the carboxy-terminal CAAX motifs (where C is cysteine, A is an aliphatic amino acid and X is any amino acid). These reactions involve prenylation of the cysteine residue, cleavage at the AAX tripeptide and methylation of the carboxyl-prenylated cysteine residue. The major CAAX protease activity is mediated by Rce1 (Ras and a-factor converting enzyme 1), an intramembrane protease (IMP) of the endoplasmic reticulum. Information on the architecture and proteolytic mechanism of Rce1 has been lacking. Here we report the crystal structure of a Methanococcus maripaludis homologue of Rce1, whose endopeptidase specificity for farnesylated peptides mimics that of eukaryotic Rce1. Its structure, comprising eight transmembrane alpha-helices, and catalytic site are distinct from those of other IMPs. The catalytic residues are located approximately 10 A into the membrane and are exposed to the cytoplasm and membrane through a conical cavity that accommodates the prenylated CAAX substrate. We propose that the farnesyl lipid binds to a site at the opening of two transmembrane alpha-helices, which results in the scissile bond being positioned adjacent to a glutamate-activated nucleophilic water molecule. This study suggests that Rce1 is the founding member of a novel IMP family, the glutamate IMPs.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864837/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3864837/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Manolaridis, Ioannis -- Kulkarni, Kiran -- Dodd, Roger B -- Ogasawara, Satoshi -- Zhang, Ziguo -- Bineva, Ganka -- O'Reilly, Nicola -- Hanrahan, Sarah J -- Thompson, Andrew J -- Cronin, Nora -- Iwata, So -- Barford, David -- 100140/Wellcome Trust/United Kingdom -- A2560/Cancer Research UK/United Kingdom -- A7403/Cancer Research UK/United Kingdom -- A8022/Cancer Research UK/United Kingdom -- BB/G023425/1/Biotechnology and Biological Sciences Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2013 Dec 12;504(7479):301-5. doi: 10.1038/nature12754. Epub 2013 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2]. ; 1] Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2] [3] Division of Biological Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India (K.K.); Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK (R.B.D.). ; 1] Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK [2] Division of Biological Sciences, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India (K.K.); Cambridge Institute for Medical Research, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0XY, UK (R.B.D.). ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. ; Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK. ; Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK. ; 1] Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [2] JST, Research Acceleration Program, Membrane Protein Crystallography Project, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan [3] Department of Life Sciences, Imperial College, London SW7 2AZ, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24291792" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; Amino Acid Sequence ; Animals ; Archaeal Proteins/chemistry/metabolism ; *Biocatalysis ; Conserved Sequence ; Crystallography, X-Ray ; Cysteine/metabolism ; DNA-Binding Proteins/chemistry/metabolism ; Endopeptidases/chemistry/metabolism ; Endoplasmic Reticulum/enzymology ; Escherichia coli Proteins/chemistry/metabolism ; Glutamic Acid/metabolism ; Humans ; Membrane Proteins/*chemistry/metabolism ; Metalloendopeptidases/chemistry/metabolism ; Methanococcus/*enzymology ; Mice ; Models, Molecular ; Molecular Sequence Data ; Peptide Hydrolases/*chemistry/classification/*metabolism ; *Prenylation ; Protein Structure, Tertiary ; Proto-Oncogene Proteins p21(ras)/chemistry/*metabolism ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...