ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (386)
  • Spacecraft Propulsion and Power  (156)
  • Environment Pollution  (149)
  • Aircraft Design, Testing and Performance
  • Female
  • 2010-2014  (132)
  • 1995-1999  (246)
  • 1950-1954  (5)
  • 1940-1944  (3)
Collection
Years
Year
  • 1
    Publication Date: 2019-07-10
    Description: The overall objective of the NASA Atmospheric Effects of Aviation Project (AEAP) is to develop scientific bases for assessing atmospheric impacts of the exhaust emissions by both current and future fleets of subsonic and supersonic aircraft. Among the six primary elements of the AEAP is Emissions Characterization. The objective of the Emission Characterization effort is to determine the exhaust emission constituents and concentrations at the engine exit plane. The specific objective of this engine test is to obtain a database of gaseous and particulate emissions as a function of fuel sulfur and engine operating conditions. The database of the particulate emission properties is to be used as a comparative baseline with subsequent flight measurement. The engine used in this test was a Pratt & Whitney F1OO-200E turbofan engine. Aviation fuel (Jet A) with a range of fuel sulfur was used. Low and high sulfur values are limited by commercially available fuels and by fuel specification limits of O.3% by weight. Test matrix was set by parametrically varying the combustor inlet temperature (T(sub 3) between idle and maximum power setting at simulated SLS and up to five other altitudes for each fuel. Four diagnostic systems, extractive and non-intrusive, were assembled for the gaseous and particulate emissions characterization measurements study. NASA extractive system includes smoke meter and analyzers for measurement of CO, CO2, NO, NOx, O2, total unburnt hydrocarbons (THC), and SO2. Particulate emissions were characterized by University of Missouri-Rolla Mobile Aerosol Sampling System. A chemical ionization mass spectrometer from the Air Force Research Laboratory at Hanscom AFB was used to measure SO2 and HNO3. Aerodyne Research. Inc. used infrared tunable diode laser absorption to measure SO2, SO3, NO, H2O and CO2.
    Keywords: Environment Pollution
    Type: NASA/TM-1998-208509 , NAS 1.15:208509 , ARL-TR-1804 , E-11360 , GRC-E-DAA-TN52650
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-03
    Description: The aerosol retrieval algorithms used by the Moderate-Resolution Imaging Spectroradiometer (MODIS) and Multi-Angle Imaging SpectroRadiometer (MISR) sensors on the Earth Observing Satellite (EOS) AM-1 platform operate by comparing measured radiances with tabulated radiances that have been computed for specific aerosol models. These aerosol models are based almost entirely on surface and/or column averaged measurements and so may not accurately represent the ambient aerosol properties. Therefore, to validate these EOS algorithms and to determine the effects of aerosols on the clear-sky radiative flux, we have begun to evaluate the vertical variability of ambient aerosol properties using the aerosol backscattering and extinction profiles measured by the Cloud and Radiation Testbed (CART) and NASA Goddard Space Flight Center (GSFC) Raman Lidars. Using the procedures developed for the GSFC Scanning Raman Lidar (SRL), we have developed and have begun to implement algorithms for the CART Raman Lidar to routinely provide profiles of aerosol extinction and backscattering during both nighttime and ,daytime operations. Aerosol backscattering and extinction profiles are computed for both lidar systems using data acquired during the 1996 and 1997 Water Vapor Intensive Operating Periods (IOPs). By integrating these aerosol extinction profiles, we derive measurements of aerosol optical thickness and compare these with coincident sun photometer measurements. We also use these measurements to measure the aerosol extinction/backscatter ratio S(sub a) (i.e. 'lidar ratio'). Furthermore, we use the simultaneous water vapor measurements acquired by these Raman lidars to investigate the effects of water vapor on aerosol optical properties.
    Keywords: Environment Pollution
    Type: Nineteenth International Laser Radar Conference; 207-210; NASA/CP-1998-207671/PT1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice-core measurements. We use a new dataset of wet deposition for 2000-2002 based on critical assessment of the quality of existing regional network data. We show that for present-day (year 2000 ACCMIP time-slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of 50 Tg(N) yr1 from nitrogen oxide emissions, 60 Tg(N) yr1 from ammonia emissions, and 83 Tg(S) yr1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards misrepresentation of 1980 NH3 emissions over North America. Based on ice-core records, the 1850 deposition fluxes agree well with Greenland ice cores but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double 2000 in some scenarios and reaching 1300 mg(N) m2 yr1 averaged over regional to continental scale regions in RCP 2.6 and 8.5, 3050 larger than the values in any region currently (2000). The new ACCMIP deposition dataset provides novel, consistent and evaluated global gridded deposition fields for use in a wide range of climate and ecological studies.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN8385 , Atmospheric Chemistry and Physics - Discussions; 13; 6247-6294
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The photochemistry of the troposphere over the South Atlantic basin is examined by modeling of aircraft observations up to 12-km altitude taken during the TRACE A expedition in September-October 1992. A close balance is found in the 0 to 12-km column between photochemical production and loss Of O3, with net production at high altitudes compensating for weak net loss at low altitudes. This balance implies that O3 concentrations in the 0-12 km column can be explained solely by in situ photochemistry; influx from the stratosphere is negligible. Simulation of H2O2, CH3OOH, and CH2O concentrations measured aboard the aircraft lends confidence in the computations of O3 production and loss rates, although there appears to be a major gap in current understanding of CH2O chemistry in the marine boundary layer. The primary sources of NO(x) over the South Atlantic Basin appear to be continental (biomass burning, lightning, soils). There is evidence that NO(x) throughout the 0 to 12-km column is recycled from its oxidation products rather than directly transported from its primary sources. There is also evidence for rapid conversion of HNO3 to NO(x) in the upper troposphere by a mechanism not included in current models. A general representation of the O3 budget in the tropical troposphere is proposed that couples the large scale Walker circulation and in situ photochemistry. Deep convection in the rising branches of the Walker circulation injects NO(x) from combustion, soils, and lightning to the upper troposphere, leading to O3 production; eventually, the air subsides and net O3 loss takes place in the lower troposphere, closing the O3 cycle. This scheme implies a great sensitivity of the oxidizing power of the atmosphere to NO(x) emissions in the tropics.
    Keywords: Environment Pollution
    Type: NASA/CR-96-207268 , NAS 1.26:207268 , Paper-96JD00336 , Journal of Geophysical Research (ISSN 0148-0227); 101; D19; 24,235-24,250
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-23
    Description: The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3 in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(sub x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of O3 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day. This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more O3 than expected.
    Keywords: Environment Pollution
    Type: Science; Volume 279; 49-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-23
    Description: The concentrations of the hydrogen radicals OH and HO2 in the middle and upper troposphere were measured simultaneously with those of NO, O3, CO, H2O, CH4, non-methane hydrocarbons, and with the ultraviolet and visible radiation field. The data allow a direct examination of the processes that produce O3, in this region of the atmosphere. Comparison of the measured concentrations of OH and HO2 with calculations based on their production from water vapor, ozone, and methane demonstrate that these sources are insufficient to explain the observed radical concentrations in the upper troposphere. The photolysis of carbonyl and peroxide compounds transported to this region from the lower troposphere may provide the source of HO(x) required to sustain the measured abundances of these radical species. The mechanism by which NO affects the production of 03 is also illustrated by the measurements. In the upper tropospheric air masses sampled, the production rate for ozone (determined from the measured concentrations of HO2 and NO) is calculated to be about 1 part per billion by volume each day.This production rate is faster than previously thought and implies that anthropogenic activities that add NO to the upper troposphere, such as biomass burning and aviation, will lead to production of more 03 than expected.
    Keywords: Environment Pollution
    Type: Science; Volume 279; 49-53
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-29
    Description: An upper limit for aircraft-produced perturbations to aerosols and gaseous exhaust products in the upper troposphere and lower stratosphere (UT/LS) is derived using the 1992 aviation fuel tracer simulation performed by eleven global atmospheric models. Key Endings are that subsonic aircraft emissions: (1) have not be responsible for the observed water vapor trends at 40 deg N; (2) could be a significant source of soot mass near 12 km, but not at 20 km; (3) might cause a noticeable increase in the background sulfate aerosol surface area and number densities (but not mass density) near the northern mid-latitude tropopause; and (4) could provide a global, annual mean top of the atmosphere radiative forcing up to +0.006 W/sq m and -0.013 W/sq m due to emitted soot and sulfur, respectively.
    Keywords: Environment Pollution
    Type: Geophysical Research Letters
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-18
    Description: In-situ measurements of a large number of trace chemicals from upper troposphere/lower stratosphere (UT/LS) were performed with the NASA DC-8 aircraft during February/March 1994 over the Pacific Ocean (10 S to 60 N). Mixing ratios in the UT were relatively low in the warm tropical and subtropical air south of the polar jetstream (approx. =28 N) but increased sharply with latitude in the cold polar air north of the jetstream. At about 45 N, high concentrations of PAN (300 ppt) coexisted with extremely low (approx. = 20 ppt) concentrations of NOx. Elevated NOx levels in the UT did not always correspond to continental outflow conditions. Deepest penetrations into the stratosphere (550 ppb O3, 279 ppb NOx, and 350 K potential temperature) corresponded to a region that has been defined as the 'lowermost stratosphere' (LS) by Holton et al. Analysis of data shows that the mixing ratios of long-lived tracer species (e.g., CH4, HNO3, NOy, CFCs, HCFCs) are linearly correlated with those of O3 and N2O. A delta-NOY/delta-O3 of 0.0054 ppb/ppb and delta-NOy/delta-N2O of -0.081 ppb/ppb is in good agreement with other reported measurements from the DC-8. These slopes are however, somewhat steeper than those reported from the ER-2 studies. We find that the reactive nitrogen budget in the UT/LS is largely balanced with shortfalls that are no greater than 15%. A number of oxygenated species (e.g., acetone, H2O2) are present and may provide an important in-situ source of HOx in the UT/LS region.
    Keywords: Environment Pollution
    Type: 1997 Conference on the Atmospheric Effects of Aviation; Mar 09, 1997 - Mar 14, 1997; Virginia Beach, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: The demonstration of a unique liquid hydrogen (LH2) storage and feed system concept for solar thermal upper stage was cooperatively accomplished by a Boeing/NASA Marshall Space Flight Center team. The strategy was to balance thermodynamic venting with the engine thrusting timeline during a representative 30-day mission, thereby, assuring no vent losses. Using a 2 cubic m (71 cubic ft) LH2 tank, proof-of-concept testing consisted of an engineering checkout followed by a 30-day mission simulation. The data were used to anchor a combination of standard analyses and computational fluid dynamics (CFD) modeling. Dependence on orbital testing has been incrementally reduced as CFD codes, combined with standard modeling, continue to be challenged with test data such as this.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TP-2012-217469 , M-1345
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...