ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Analytica Chimica Acta 243 (1991), S. 131-137 
    ISSN: 0003-2670
    Keywords: Canonical discriminant analysis ; Microparticles ; Molecular speciation ; Nickel compounds ; Principle component analysis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Analytica Chimica Acta 243 (1991), S. 139-147 
    ISSN: 0003-2670
    Keywords: Canonical discriminant analysis ; Microparticles ; Molecular speciation ; Nickel compounds ; Principle component analysis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-16
    Description: We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N) yr−1 from nitrogen oxide emissions, 60 Tg(N) yr−1 from ammonia emissions, and 83 Tg(S) yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs) to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching 〉 1300 mg(N) m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000). However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in all the RCPs. The new ACCMIP multi-model deposition dataset provides state-of-the-science, consistent and evaluated time slice (spanning 1850–2100) global gridded deposition fields for use in a wide range of climate and ecological studies.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-26
    Description: © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Atmospheric Chemistry and Physics 13 (2013): 7997-8018, doi:10.5194/acp-13-7997-2013.
    Description: We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N) yr−1 from nitrogen oxide emissions, 60 Tg(N) yr−1 from ammonia emissions, and 83 Tg(S) yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs) to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching 〉 1300 mg(N) m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000). However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in all the RCPs. The new ACCMIP multi-model deposition dataset provides state-of-the-science, consistent and evaluated time slice (spanning 1850–2100) global gridded deposition fields for use in a wide range of climate and ecological studies.
    Description: ACCMIP is organized under the auspices of Atmospheric Chemistry and Climate (AC&C), a project of International Global Atmospheric Chemistry (IGAC) and Stratospheric Processes And their Role in Climate (SPARC) under the International Geosphere-Biosphere Programme (IGBP) and World Climate Research Program (WCRP). The authors are grateful to the British Atmospheric Data Centre (BADC), which is part of the NERC National Centre for Atmospheric Science (NCAS), for collecting and archiving the ACCMIP data. D. Shindell, G. Faluvegi and Y. Lee acknowledge support from the NASA MAP and ACMAP programs. D. Plummer would like to thank the Canadian Foundation for Climate and Atmospheric Sciences for their longrunning support of CMAM development. S. Ghan was supported by the US Department of Energy Office of Science Decadal and Regional Climate Prediction using Earth System Models (EaSM) program. The Pacific Northwest National Laboratory (PNNL) is operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. The work of D. Bergmann and P. Cameron-Smith was funded by the US Dept. of Energy (BER), performed under the auspices of LLNL under contract DE-AC52- 07NA27344, and used the supercomputing resources of NERSC under contract No. DE-AC02-05CH11231. G. Zeng acknowledges NIWA HPCF facility and funding from New Zealand Ministry of Science and Innovation. The GEOSCCM work was supported by the NASA Modeling, Analysis and Prediction program, with computing resources provided by NASA’s High-End Computing Program through the NASA Advanced Supercomputing Division. The STOC-HadAM3 work made use of the facilities of HECToR, the UK national high-performance computing service which is funded by the Office of Science and Technology through EPSRC High End Computing Programme. The CICERO-OsloCTM2 simulations were done within the projects SLAC (Short Lived Atmospheric Components) and EarthClim funded by the Norwegian Research Council and ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants) funded by the European Union. The MOCAGE simulations were supported by Météo-France and CNRS. Supercomputing time was provided by Météo-France/DSI supercomputing center. The CESM project (which includes CESM-CAM-Superfast, NCAR-CAM3.5 and NCAR-CAM5.1) is supported by the National Science Foundation and the Office of Science (BER) of the US Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation. CMAP precipitation data are provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their website at http://www.esrl.noaa.gov/psd/. We thank Robert Vet and his precipitation chemistry assessment team for making the WMO deposition dataset available prior to publication.We acknowledge the substantial efforts of the field and logistics personnel involved in collecting the ice cores including those from WAIS Divide, the Norwegian–United States Scientific Traverse of East Antarctica, and NEEM. We also thank Dan Pasteris and the other students and staff of the DRI ultra-trace ice core chemistry laboratory for help in analyzing the ice cores and the Office of Polar Programs at the National Science Foundation for supporting collection and analysis of the cores.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2000-07-01
    Print ISSN: 0584-8547
    Electronic ISSN: 1873-3565
    Topics: Chemistry and Pharmacology , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-02-15
    Description: A quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), called low-Z particle EPMA, was used to analyse individual aerosol particles collected in Incheon, Korea on 13–18 October 2008 (a typical haze episode occurred from 15 to 18 October). Overall 3600 individual particles in PM2.5-10 and PM1.0-2.5 fractions from 12 aerosol samples collected on haze and non-haze days were analysed. The analysed particles were classified, based on their X-ray spectral data together with their secondary electron images. The major particle types included organic carbon (OC), elemental carbon (EC), sea-salt, mineral dust (such as aluminosilicate, SiO2, CaCO3/CaMgCO3, etc.), (NH4)2SO4/NH4HSO4-containing, K-containing, Fe-rich and fly ash particles. Their relative number abundance results showed that OC particles were significantly increased while sea-salts and mineral dust particles were significantly decreased (especially in PM1.0-2.5 fraction) when haze occurred. For the other particle types (except Fe-rich particles in PM2.5-10 fraction), there were no significant differences in their relative abundances between haze and non-haze samples. On non-haze days, the nitrate-containing reacted sea-salt and mineral dust particles in PM1.0-2.5 fraction significantly outnumbered the sulfate-containing ones, whereas it was the reverse on haze days, implying that on haze days there were special sources or formation mechanisms for fine aerosol particles (≤2.5 μm in aerodynamic diameter). The emission of air pollutants from motor vehicles and stagnant meteorological conditions, such as low wind speed and high relative humidity, might be responsible for the elevated level of OC particles on haze days.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-03-27
    Description: In our previous works, it was demonstrated that the combined use of quantitative energy-dispersive electron probe X-ray microanalysis (ED-EPMA), which is also known as low-Z particle EPMA, and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) imaging has great potential for a detailed characterization of individual aerosol particles. In this study, extensively chemically modified (aged) individual Asian dust particles collected during an Asian dust storm event on 11 November 2002 in Korea were characterized by the combined use of low-Z particle EPMA and ATR-FTIR imaging. Overall, 109 individual particles were classified into four particle types based on their morphology, elemental concentrations, and molecular species and/or functional groups of individual particles available from the two analytical techniques: Ca-containing (38%), NaNO3-containing (30%), silicate (22%), and miscellaneous particles (10%). Among the 41 Ca-containing particles, 10, 8, and 14 particles contained nitrate, sulfate, and both, respectively, whereas only two particles contained unreacted CaCO3. Airborne amorphous calcium carbonate (ACC) particles were observed in this Asian dust sample for the first time, where their IR peaks for the insufficient symmetric environment of CO32− ions of ACC were clearly differentiated from those of crystalline CaCO3. This paper also reports the first inland field observation of CaCl2 particles probably converted from CaCO3 through the reaction with HCl(g). HCl(g) was likely released from the reaction of sea salt with NOx/HNO3, as all 33 particles of marine origin contained NaNO3 (no genuine sea salt particle was encountered). Some silicate particles with minor amounts of calcium were observed to be mixed with nitrate, sulfate, and water. Among 24 silicate particles, 10 particles are mixed with water, the presence of which could facilitate atmospheric heterogeneous reactions of silicate particles including swelling minerals, such as montmorillonite and vermiculite, and nonswelling ones, such as feldspar and quartz. This paper provides detailed information on the physicochemical characteristics of these aged individual Asia dust particles through the combined use of the two single-particle analytical techniques, and using this analytical methodology it is clearly shown that internal mixing states of the aged particles are highly complicated.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2009-09-22
    Description: Low-Z particle electron probe X-ray microanalysis (low-Z particle EPMA) shows powerful advantages for the characterization of ambient particulate matter in environmental and geological applications. By the application of the low-Z particle EPMA single particle analysis, an overall examination of 1800 coarse and fine particles (aerodynamic diameters: 2.5–10 μm and 1.0–2.5 μm, respectively) in six samples collected on 28 April–1 May 2006 in the marine boundary layer (MBL) of the Bohai Sea and Yellow Sea was conducted. Three samples (D1, D2, and D3) were collected along the Bohai Bay, Bohai Straits, and Yellow Sea near Korea during an Asian dust storm event while the other three samples (N3, N2, and N1) were collected on non-Asian dust (NAD) days. Based on X-ray spectral and secondary electron image data, 15 different types of particles were identified, in which soil-derived particles were encountered with the largest frequency, followed by (C, N, O)-rich droplets (likely the mixture of organic matter and NH4NO3), particles of marine origin, and carbonaceous, Fe-rich, fly ash, and (C, N, O, S)-rich droplet particles. Results show that during the Asian dust storm event relative abundances of the (C, N, O)-rich droplets and the nitrate-containing secondary soil-derived particles were markedly increased (on average by a factor of 4.5 and 2, respectively in PM2.5−10 fraction and by a factor of 1.9 and 1.5, respectively in PM1.0−2.5 fraction) in the MBL of the Bohai Sea and Yellow Sea, implying that Asian dust aerosols in springtime are an important carrier of gaseous inorganic nitrogen species, especially NOx (or HNO3) and NH3.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-08-20
    Description: We present multi-model global datasets of nitrogen and sulfate deposition covering time periods from 1850 to 2100, calculated within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). The computed deposition fluxes are compared to surface wet deposition and ice core measurements. We use a new dataset of wet deposition for 2000–2002 based on critical assessment of the quality of existing regional network data. We show that for present day (year 2000 ACCMIP time slice), the ACCMIP results perform similarly to previously published multi-model assessments. For this time slice, we find a multi-model mean deposition of approximately 50 Tg(N) yr−1 from nitrogen oxide emissions, 60 Tg(N) yr−1 from ammonia emissions, and 83 Tg(S) yr−1 from sulfur emissions. The analysis of changes between 1980 and 2000 indicates significant differences between model and measurements over the United States but less so over Europe. This difference points towards a potential misrepresentation of 1980 NH3 emissions over North America. Based on ice core records, the 1850 deposition fluxes agree well with Greenland ice cores, but the change between 1850 and 2000 seems to be overestimated in the Northern Hemisphere for both nitrogen and sulfur species. Using the Representative Concentration Pathways (RCPs) to define the projected climate and atmospheric chemistry related emissions and concentrations, we find large regional nitrogen deposition increases in 2100 in Latin America, Africa and parts of Asia under some of the scenarios considered. Increases in South Asia are especially large, and are seen in all scenarios, with 2100 values more than double their 2000 counterpart in some scenarios and reaching 〉 1300 mg(N) m−2 yr−1 averaged over regional to continental-scale regions in RCP 2.6 and 8.5, ~ 30–50% larger than the values in any region currently (circa 2000). However, sulfur deposition rates in 2100 are in all regions lower than in 2000 in all the RCPs. The new ACCMIP multi-model deposition dataset provides state-of-the-science, consistent and evaluated time slice (spanning 1850–2100) global gridded deposition fields for use in a wide range of climate and ecological studies.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-17
    Description: Previous controversial studies on the hygroscopic behavior of NaNO3 aerosols and our frequent observation of crystalline NaNO3-containing ambient aerosol particles prompted this extensive hygroscopic study on NaNO3 aerosol particles. In this work, the hygroscopic behavior of individual NaNO3 particles of 2.5–4.0 μm in diameter is investigated on a single-particle basis using an optical microscopy technique. Quite different hygroscopic behaviors between particles generated by the nebulization of NaNO3 solution and powdery particles were observed; i.e., most of generated particles continuously grew and shrank during humidifying and dehydration processes, respectively, and yet all the individual powdery particles had reproducible deliquescence and efflorescence relative humidities (DRHs and ERHs). The different behaviors of the two NaNO3 systems are due to the different nucleation mechanisms. Our hygroscopic studies of NaNO3 particles generated from aqueous NaNO3 solutions indicate that they nucleate via homogeneous nucleation, but the time scale for the nucleation to occur is too long to be atmospherically relevant. And thus no efflorescence of the particles has been observed in the laboratory measurements. However, when chemical species acting as heterogeneous nuclei are present, then efflorescence occurs which can explain the observation of ambient crystalline NaNO3 particles. It is imperative to work with heterogeneous nucleation systems which are more relevant to the real world.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...