ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Mice  (3)
  • 2015-2019  (3)
Collection
Keywords
Years
Year
  • 1
    Publication Date: 2015-03-13
    Description: After stimulation, dendritic cells (DCs) mature and migrate to draining lymph nodes to induce immune responses. As such, autologous DCs generated ex vivo have been pulsed with tumour antigens and injected back into patients as immunotherapy. While DC vaccines have shown limited promise in the treatment of patients with advanced cancers including glioblastoma, the factors dictating DC vaccine efficacy remain poorly understood. Here we show that pre-conditioning the vaccine site with a potent recall antigen such as tetanus/diphtheria (Td) toxoid can significantly improve the lymph node homing and efficacy of tumour-antigen-specific DCs. To assess the effect of vaccine site pre-conditioning in humans, we randomized patients with glioblastoma to pre-conditioning with either mature DCs or Td unilaterally before bilateral vaccination with DCs pulsed with Cytomegalovirus phosphoprotein 65 (pp65) RNA. We and other laboratories have shown that pp65 is expressed in more than 90% of glioblastoma specimens but not in surrounding normal brain, providing an unparalleled opportunity to subvert this viral protein as a tumour-specific target. Patients given Td had enhanced DC migration bilaterally and significantly improved survival. In mice, Td pre-conditioning also enhanced bilateral DC migration and suppressed tumour growth in a manner dependent on the chemokine CCL3. Our clinical studies and corroborating investigations in mice suggest that pre-conditioning with a potent recall antigen may represent a viable strategy to improve anti-tumour immunotherapy.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510871/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4510871/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mitchell, Duane A -- Batich, Kristen A -- Gunn, Michael D -- Huang, Min-Nung -- Sanchez-Perez, Luis -- Nair, Smita K -- Congdon, Kendra L -- Reap, Elizabeth A -- Archer, Gary E -- Desjardins, Annick -- Friedman, Allan H -- Friedman, Henry S -- Herndon, James E 2nd -- Coan, April -- McLendon, Roger E -- Reardon, David A -- Vredenburgh, James J -- Bigner, Darell D -- Sampson, John H -- 1UL2 RR024128-01/RR/NCRR NIH HHS/ -- P01 CA154291/CA/NCI NIH HHS/ -- P01-CA154291-01A1/CA/NCI NIH HHS/ -- P50 CA108786/CA/NCI NIH HHS/ -- P50 NS020023/NS/NINDS NIH HHS/ -- P50-CA108786/CA/NCI NIH HHS/ -- P50-NS20023/NS/NINDS NIH HHS/ -- R01 CA134844/CA/NCI NIH HHS/ -- R01 CA177476/CA/NCI NIH HHS/ -- R01 NS067037/NS/NINDS NIH HHS/ -- R01-CA134844/CA/NCI NIH HHS/ -- R01-CA177476-01/CA/NCI NIH HHS/ -- R01-NS067037/NS/NINDS NIH HHS/ -- T32 AI052077/AI/NIAID NIH HHS/ -- T32 GM007171/GM/NIGMS NIH HHS/ -- England -- Nature. 2015 Mar 19;519(7543):366-9. doi: 10.1038/nature14320. Epub 2015 Mar 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA [3] Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; 1] Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; 1] Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA. ; 1] Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA. ; Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina 27710, USA. ; 1] Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA. ; 1] Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina 27710, USA [2] Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA [3] Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA [4] Department of Immunology, Duke University Medical Center, Durham, North Carolina 27710, USA [5] Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina 27710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25762141" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Neoplasm/immunology ; CD4-Positive T-Lymphocytes/drug effects/immunology ; Cancer Vaccines/administration & dosage/*immunology/therapeutic use ; Cell Movement/drug effects ; Chemokine CCL3/*immunology ; Dendritic Cells/cytology/*drug effects/immunology ; Female ; Glioblastoma/drug therapy/*immunology/pathology/*therapy ; Humans ; Immunotherapy/methods ; Lymph Nodes/cytology/drug effects/immunology ; Mice ; Mice, Inbred C57BL ; Phosphoproteins/chemistry/genetics/immunology ; Substrate Specificity ; Survival Rate ; Tetanus Toxoid/*administration & dosage/*pharmacology/therapeutic use ; Treatment Outcome ; Viral Matrix Proteins/chemistry/genetics/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-01-21
    Description: The gut microbiota plays a crucial role in the maturation of the intestinal mucosal immune system of its host. Within the thousand bacterial species present in the intestine, the symbiont segmented filamentous bacterium (SFB) is unique in its ability to potently stimulate the post-natal maturation of the B- and T-cell compartments and induce a striking increase in the small-intestinal Th17 responses. Unlike other commensals, SFB intimately attaches to absorptive epithelial cells in the ileum and cells overlying Peyer's patches. This colonization does not result in pathology; rather, it protects the host from pathogens. Yet, little is known about the SFB-host interaction that underlies the important immunostimulatory properties of SFB, because SFB have resisted in vitro culturing for more than 50 years. Here we grow mouse SFB outside their host in an SFB-host cell co-culturing system. Single-celled SFB isolated from monocolonized mice undergo filamentation, segmentation, and differentiation to release viable infectious particles, the intracellular offspring, which can colonize mice to induce signature immune responses. In vitro, intracellular offspring can attach to mouse and human host cells and recruit actin. In addition, SFB can potently stimulate the upregulation of host innate defence genes, inflammatory cytokines, and chemokines. In vitro culturing thereby mimics the in vivo niche, provides new insights into SFB growth requirements and their immunostimulatory potential, and makes possible the investigation of the complex developmental stages of SFB and the detailed dissection of the unique SFB-host interaction at the cellular and molecular levels.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Schnupf, Pamela -- Gaboriau-Routhiau, Valerie -- Gros, Marine -- Friedman, Robin -- Moya-Nilges, Maryse -- Nigro, Giulia -- Cerf-Bensussan, Nadine -- Sansonetti, Philippe J -- Howard Hughes Medical Institute/ -- England -- Nature. 2015 Apr 2;520(7545):99-103. doi: 10.1038/nature14027. Epub 2015 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Institut national de la recherche agronomique (INRA) Micalis UMR1319, 78350 Jouy-en-Josas, France [3] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France [2] Ecole Normale Superieure de Lyon, Department of Biology, 69007 Lyon, France. ; Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; Imagopole, Ultrastructural Microscopy Platform, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France. ; 1] INSERM, UMR1163, Laboratory of Intestinal Immunity, Institut Imagine, 24, Boulevard du Montparnasse, 75015 Paris, France [2] Universite Paris Descartes-Sorbonne Paris Cite and Institut Imagine, 75015 Paris, France. ; 1] Unite de Pathogenie Microbienne Moleculaire and Institut national de la sante et de la recherche medicale (INSERM) unit U786, Institut Pasteur, 25-28 Rue du Dr Roux, 75724 Paris Cedex 15, France [2] Microbiologie et Maladies Infectieuses, College de France, 11 Marcelin Berthelot Square, 75005 Paris, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25600271" target="_blank"〉PubMed〈/a〉
    Keywords: Actins/metabolism ; Animals ; Bacteria/cytology/*growth & development/*immunology ; Cell Line ; Coculture Techniques/*methods ; Escherichia coli/cytology/growth & development/immunology ; Feces/microbiology ; Female ; Germ-Free Life ; Humans ; Immunity, Mucosal/immunology ; Intestinal Mucosa/cytology/immunology/microbiology ; Intestines/cytology/*immunology/*microbiology ; Lymphocytes/cytology/*immunology ; Male ; Mice ; Microbial Viability ; Peyer's Patches/immunology ; Symbiosis/*immunology ; Th17 Cells/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-03-24
    Description: Targeted, temporally regulated neural modulation is invaluable in determining the physiological roles of specific neural populations or circuits. Here we describe a system for non-invasive, temporal activation or inhibition of neuronal activity in vivo and its use to study central nervous system control of glucose homeostasis and feeding in mice. We are able to induce neuronal activation remotely using radio waves or magnetic fields via Cre-dependent expression of a GFP-tagged ferritin fusion protein tethered to the cation-conducting transient receptor potential vanilloid 1 (TRPV1) by a camelid anti-GFP antibody (anti-GFP-TRPV1). Neuronal inhibition via the same stimuli is achieved by mutating the TRPV1 pore, rendering the channel chloride-permeable. These constructs were targeted to glucose-sensing neurons in the ventromedial hypothalamus in glucokinase-Cre mice, which express Cre in glucose-sensing neurons. Acute activation of glucose-sensing neurons in this region increases plasma glucose and glucagon, lowers insulin levels and stimulates feeding, while inhibition reduces blood glucose, raises insulin levels and suppresses feeding. These results suggest that pancreatic hormones function as an effector mechanism of central nervous system circuits controlling blood glucose and behaviour. The method we employ obviates the need for permanent implants and could potentially be applied to study other neural processes or used to regulate other, even dispersed, cell types.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stanley, Sarah A -- Kelly, Leah -- Latcha, Kaamashri N -- Schmidt, Sarah F -- Yu, Xiaofei -- Nectow, Alexander R -- Sauer, Jeremy -- Dyke, Jonathan P -- Dordick, Jonathan S -- Friedman, Jeffrey M -- GM067545/GM/NIGMS NIH HHS/ -- GM095654/GM/NIGMS NIH HHS/ -- MH105941/MH/NIMH NIH HHS/ -- U01 MH105941/MH/NIMH NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2016 Mar 31;531(7596):647-50. doi: 10.1038/nature17183. Epub 2016 Mar 23.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Genetics, Rockefeller University, New York, New York 10065, USA. ; Department of Chemical &Biological Engineering, Center for Biotechnology &Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA. ; Department of Radiology, Weill Cornell Medical College, New York, New York 10065, USA. ; Howard Hughes Medical Institute, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27007848" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Blood Glucose/*metabolism ; Eating/*physiology ; Ferritins/genetics/metabolism ; Glucagon/blood ; Glucokinase/metabolism ; Homeostasis ; Hypoglycemia/metabolism ; Insulin/blood ; Integrases/metabolism ; *Magnetic Fields ; Mice ; Neural Inhibition ; Neurons/*physiology ; Pancreatic Hormones/metabolism ; *Radio Waves ; Recombinant Fusion Proteins/genetics/metabolism ; TRPV Cation Channels/genetics/metabolism ; Time Factors ; Ventromedial Hypothalamic Nucleus/*cytology/*physiology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...