ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-08-14
    Description: The Origins Space Telescope (OST) will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did the universe evolve in response to its changing ingredients? How common are life-bearing planets? To accomplish its scientific objectives, OST will operate at mid- and far-infrared wavelengths and offer superlative sensitivity and new spectroscopic capabilities. The OST study team will present a scientifically compelling, executable mission concept to the 2020 Decadal Survey in Astrophysics. To understand the concept solution space, our team studied two alternative mission concepts. We report on the study approach and describe both of these concepts, give the rationale for major design decisions, and briefly describe the mission-enabling technology.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN60485 , Space Telescopes and Instrumentation 2018: Optical, Infrared, and Millimeter Wave; 10698; 1069815|SPIE Astronomical Telescopes + Instrumentation; Jun 10, 2018 - Jun 15, 2018; Austin, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Fire is an essential Earth System process that alters ecosystem and atmospheric composition. Here we assessed long-term fire trends using multiple satellite datasets. We found that global burned area declined by 24.3 8.8 over the past 18 years. The estimated decrease in burned area remained robust after adjusting for precipitation variability and was largest in savannas. Agricultural expansion and intensification were primary drivers of declining fire activity. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. Fire models were unable to reproduce the pattern and magnitude of observed declines, suggesting they may overestimate fire emissions in future projections. Using economic and demographic variables, we developed a conceptual model for predicting fire in human-dominated landscapes.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN44488 , Science (ISSN 0036-8075) (e-ISSN 1095-9203); 356; 6345; 1356-1362
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We completed a lidar survey of lava tubes in Idaho as an analog to the exploration of pits on the Moon and Mars. Pits are exploration targets for future missions because they provide both lucrative science and possible shelter. Exploration at these sites will require innovative engineering to access the interiors. We present findings that demonstrate the scientific and operational potential of lidar within such challenging environments, and discuss our results for Indian Tunnel, the largest tube we surveyed (Fig. 1).
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN38936 , Lunar and Planetary Science Conference; Mar 20, 2017 - Mar 24, 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: The NASA Soil Moisture Active Passive (SMAP) mission has utilized a set of core validation sites as the primary methodology in assessing the soil moisture retrieval algorithm performance. Those sites provide well calibrated in situ soil moisture measurements within SMAP product grid pixels for diverse conditions and locations.The estimation of the average soil moisture within the SMAP product grid pixels based on in situ measurements is more reliable when location specific calibration of the sensors has been performed and there is adequate replication over the spatial domain, with an up-scaling function based on analysis using independent estimates of the soil moisture distribution. SMAP fulfilled these requirements through a collaborative CalVal Partner program.This paper presents the results from 34 candidate core validation sites for the first eleven months of the SMAP mission. As a result of the screening of the sites prior to the availability of SMAP data, out of the 34 candidate sites 18 sites fulfilled all the requirements at one of the resolution scales (at least). The rest of the sites are used as secondary information in algorithm evaluation. The results indicate that the SMAP radiometer-based soil moisture data product meets its expected performance of 0.04 cu m/cu m volumetric soil moisture (unbiased root mean square error); the combined radar-radiometer product is close to its expected performance of 0.04 cu m/cu m, and the radar-based product meets its target accuracy of 0.06 cu m/cu m (the lengths of the combined and radar-based products are truncated to about 10 weeks because of the SMAP radar failure). Upon completing the intensive CalVal phase of the mission the SMAP project will continue to enhance the products in the primary and extended geographic domains, in co-operation with the CalVal Partners, by continuing the comparisons over the existing core validation sites and inclusion of candidate sites that can address shortcomings.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN43399 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 191; 215-231
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: While measurements of ice-sheet surface elevation change are increasingly used to assess mass change, the processes that control the elevation fluctuations not related to ice-flow dynamics (e.g. firn compaction and accumulation) remain difficult to measure. Here we use radar data from the Thwaites Glacier (West Antarctica) catchment to measure the rate of thickness change between horizons of constant age over different time intervals: 2009-10, 2010-11 and 2009-11. The average compaction rate to approximately 25m depth is 0.33ma(exp -1), with largest compaction rates near the surface. Our measurements indicate that the accumulation rate controls much of the spatio-temporal variations in the compaction rate while the role of temperature is unclear due to a lack of measurements. Based on a semi-empirical, steady-state densification model, we find that surveying older firn horizons minimizes the potential bias resulting from the variable depth of the constant age horizon. Our results suggest that the spatiotemporal variations in the firn compaction rate are an important consideration when converting surface elevation change to ice mass change. Compaction rates varied by up to 0.12ma(exp -1) over distances less than 6km and were on average greater than 20% larger during the 2010-11 interval than during 2009-10.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN31432 , Annals of Glaciology; 56; 70; 155-166
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-20
    Description: NASA's Atmospheric Tomography Mission (ATom) deployed in each of the four seasons during 2016-2018, the DC-8 aircraft in order to establish global-scale datasets intended to improve the representation of chemically reactive gases in global atmospheric chemistry models (ACMs). The Global Modeling Initiative (GMI) executed simulations for each ATom flight using the GMI Chemistry Transport Model (GMI-CTM) to provide species concentrations of chemical gases along the DC-8 flight transects. To solve the problem of translating the GMI-CTM simulation data to the unique spatial resolutions of each ATom flight, the GMI ICARTT Processing Software (GMI-IPS) was developed.The GMI-IPS is written in Python and provides data processing, flight extraction, and visualization support for aircraft research projects using ICARTT format, which is a standard format for airborne instrument data. Additionally, the GMI-IPS interpolates global gridded model data from Hierarchical Data Format (HDF) to ICARTT compatible flight transects. Software classes for instruments and collections provided by the ATom DC-8 aircraft such as MER10, MMS, etc. are derived from a common base class. Other functionality provided by the GMI-IPS are: deriving missing flight entries along a transect, reading ICARTT entries from file, and providing Python data structures for storing flight and model information, and more.The GMI-IPS is GIT source controlled, has approximately 30,000 lines of code, and supports parallelization across data collections. It delivered GMI-CTM data for more than forty distinct DC-8 aircraft flights that took place under ATom. The output ICARTT files adhere to format standard V1.1, and pass the scan utility provided by NASA LaRC Airborne Science Data for Atmospheric Composition. This presentation will include a software and methods overview, and results from ATom, including assessments using the GMI-CTM showing how well observations from ATom flight transects represent a broader region.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN64364 , American Geophysical Union (AGU) Fall Meeting; Dec 10, 2018 - Dec 14, 2018; Washington, D.C.; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The biodiversity, ecosystem services and climate variability of the Antarctic continent, and the Southern Ocean are major components of the whole Earth system. Antarctic ecosystems are driven more strongly by the physical environment than many other marine and terrestrial ecosystems. As a consequence, to understand ecological functioning, cross-disciplinary studies are especially important in Antarctic research. The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaption of the Scientific Committee on Antarctic Research, which focused on challenges in identifying and applying cross-disciplinary approaches in the Antarctic. Novel ideas, and first steps in their implementation, were clustered into eight themes, ranging from scale problems, risk maps, organism and ecosystem responses to multiple environmental changes, to evolutionary processes. Scaling models and data across different spatial and temporal scales were identified as an overarching challenge. Approaches to bridge gaps in the research programmes included multi-disciplinary monitoring, linking biomolecular findings and simulated physical environments, as well as integrative ecological modelling. New strategies in academic education are proposed. The results of advanced cross-disciplinary approaches can contribute significantly to our knowledge of ecosystem functioning, the consequences of climate change, and to global assessments that ultimately benefit humankind.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN47256 , Marine Genomics (ISSN 1874-7787) (e-ISSN 1876-7478); 37; 1-17
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Bromine radicals (Br + BrO) are important atmospheric species owing to their ability to catalytically destroy ozone as well as their potential impacts on the oxidative pathways of many trace gases, including dimethylsulfide and mercury. Using space-based observations of BrO, recent studies have reported rapid enhancements of tropospheric BrO over large areas (so called "BrO explosions") connected to near-surface ozone depletion occurring in polar spring. However, the source(s) of reactive bromine and mechanism(s) that initiate these BrO explosions are uncertain. In this study, we investigate the relationships between Arctic BrO explosions and two of the proposed sources of reactive bromine: sea-salt aerosol (SSA) generated from blowing snow and first-year (seasonal) sea ice. We use tropospheric column BrO derived from the Ozone Monitoring Instrument (OMI) in conjunction with the Goddard Earth Observing System Version 5 (GEOS-5) data assimilation system provided by National Aeronautics and Space Administration Global Modeling and Assimilation Office. Case studies demonstrate a strong association between the temporal and spatial extent of OMI-observed BrO explosions and the GEOS-5 simulated blowing snow-generated SSA during Arctic spring. Furthermore, the frequency of BrO explosion events observed over the 11-year record of OMI exhibits significant correlation with a time series of the simulated SSA emission flux in the Arctic and little to no correlation with a time series of satellite-based first-year sea ice area. Therefore, we conclude that SSA generated by blowing snow is an important factor in the formation of the BrO explosion observed from space during Arctic spring.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN62749 , Journal of Geophysical Research Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 13; 6954-6983
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A critical omission from climate change impact studies on crop yield is the interaction between soil organic carbon (SOC), nitrogen (N) availability, and carbon dioxide (CO2). We used a multimodel ensemble to predict the effects of SOC and N under different scenarios of temperatures and CO2 concentrations on maize (Zea mays L.) and wheat (Triticum aestivum L.) yield in eight sites across the world. We found that including feedbacks from SOC and N losses due to increased temperatures would reduce yields by 13% in wheat and 19% in maize for a 3C rise temperature with no adaptation practices. These losses correspond to an additional 4.5% (+3C) when compared to crop yield reductions attributed to temperature increase alone. Future CO2 increase to 540 ppm would partially compensate losses by 80% for both maize and wheat at +3C, and by 35% for wheat and 20% for maize at +6C, relative to the baseline CO2 scenario.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN60415 , Agricultural & Environmental Letters (e-ISSN 2471-9625); 3; 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Satellite-based passive microwave remote sensing typically involves a scanning antenna that makes measurements at irregularly spaced locations. These locations can change on a day to day basis. Soil moisture products derived from satellite-based passive microwave remote sensing are usually resampled to a fixed Earth grid that facilitates their use in applications. In many cases the grid size is finer than the actual spatial resolution of the observation, and often this difference is not well understood by the user. Here, this issue was examined for the Soil Moisture Active Passive (SMAP) enhanced version of the passive-based soil moisture product, which has a grid size of 9-km and a nominal spatial resolution of 33-km. In situ observations from core validation sites were used to compute comparison metrics. For sites that satisfied the established reliability and scaling criteria, the impact of validating the 9-km grid product with in situ data collected over a 9-km versus a 33-km domain was very small for the sites studied (0.039 cu. m/cu. m unbiased root mean square difference for the 9-km case versus 0.037 cu. m/cu. m for the 33-km case). This result does not mean that the resolution of the product is 9-km but that for the conditions studied here the soil moisture estimated from in situ observations over 9-km is a close approximation of the soil moisture estimated from in situ observations over the 33-km resolution. The implication is that using the enhanced SMAP product at its grid resolution of 9-km should not introduce large errors in most applications.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN52965 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 207; 65-70
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...